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1 Introduction

There are many instances in which several alternatives need to be assigned scores. A typical

example is a round-robin tournament, where several contenders play against each other.

(See, for instance, Moon (1968) and Laslier (1997)). Chess players are ranked according

to the ELO scoring system. (See Elo (1978)). Citation indexes like the Journal of Citation

Reports database, are used for ranking scientific journals by their intellectual impact. (See

Pinski and Narin (1976) and Palacios-Huerta and Volij (2002)). In social choice theory,

social alternatives are ranked based on voters’ preferences. (See Arrow (1963), Sen (1970)

and Moulin (1988) who emphasize impossibility results, and Saari (2001) and Laslier (1997)

where different methods for ranking candidates in elections are studied.)

In the last decade, with the advent of the World Wide Web (WWW), numerous web-

search engines developed efficient techniques for mining information from the internet

in response to user queries. Because of the huge amounts of data on the WWW, it is

of paramount importance that data mined by the search engines be well organized and

submitted back to the user in some order of relevance to the query asked. The newer

search engines view the WWW as a directed graph which is analyzed relative to the

given query using methods based on the Perron-Frobenius theory of the eigenvectors of

non-negative matrices. (See, for instance, Brin and Page (1998), Kleinberg (1999), Page,

Brin, Motwani, and Winograd (1999), and Chakrabarti, Dom, Gibson, Kleinberg, Kumar,

Raghavan, Rajagopalan, and Tomkins (1999).)1

All of these problems share the same structure: they consist of a set of “players” (al-

ternatives, journals, web pages, etc.) and a data matrix that summarizes the relationships

among the players. In a generalized tournament, the entries of the matrix are the number

of victories of one player over the other; in a journal ranking problem the entries may

be the number of citations that each journal gets in the others; in a web page ranking

problem, the entries represent the number of links from one page to the other; in a social

choice problem, the entries represent the number of voters that prefer one alternative over

the other.

Much work has been done on scoring systems and ranking methods. See for example

1An anonymous referee suggested Saaty’s work on the analytic hierarchy process in the context of
multicriteria decision making as another successful application of the Perron-Frobenius theory.
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Zermelo (1929), Wei (1952), Kendall (1955), Daniels (1969), Moon and Pullman (1970),

Kano and Sakamoto (1985), David (1987), Keener (1993), Levchenkov (1995), van den

Brink and Gilles (2000), Herings, van der Laan, and Talman (2001), Palacios-Huerta and

Volij (2002), Conner and Grant (2000), and the comprehensive texts of David (1988) and

Laslier (1997). The simplest scoring method that is used regularly for ranking participants

in sports tournaments is the points method, which assigns to each participant the number

of victories he obtained. This ranking system is often referred to as the Copeland score and

it was axiomatized by Rubinstein (1980), Henriet (1985), and van den Brink and Gilles

(2000).2

In this paper we axiomatically characterize two scoring methods that were proposed

by Daniels (1969) and Moon and Pullman (1970), and which are based on the Perron-

Frobenius theorem for non-negative matrices. These methods, which we call the fair-bets

and the Invariant scoring methods, have a nice intuitive description based on the idea of

fairness in betting systems. A list of numbers v = (v1, ..., vn) may be viewed as a system

of bets in the following sense. A bet on i is a contract whereby the bettor gets $vj each

time player i beats player j and he pays out $vi each time player i loses regardless of i’s

opponent’s identity. The bet on i is fair if the total payment due to i’s losses equals the total

revenue obtained from i’s victories. The fair-bets method assigns scores v = (v1, . . . , vn)

to the n players so that the resulting system of bets is fair. The Invariant scores, on the

other hand, are (proportional to) the amounts that these fair bets pay as a result of each

player’s victories (which, by definition, are equal to the total amount paid due to each

player’s losses). In terms of web page scoring, the fair-bets score (vi) represents the value

of any reference from page i, whereas the invariant score of web page i is the sum of its

citations from the other web pages, weighted by their respective fair-bets values.

As seen above, scoring problems can represent a wide variety of situations where some

kind of ranking or scoring is needed. Correspondingly, a given scoring method may be

more appropriate in some applications and not adequate in others. For instance, we will

argue that the fair-bets scoring method is appropriate for scoring participants in tour-

naments (of all kinds), but is not adequate for ranking journals or web pages based on

citations (hypertext links). On the other hand, we shall argue that the Invariant method

2Readers interested in learning some of the subtle properties of this procedure can consult Merlin and
Saari (1996).
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is appropriate for ranking journals and web pages, but is not adequate for tournaments.

The reader may wonder at this point, on what basis one scoring method can be said

to be more appropriate or adequate than another. The best framework to deal with these

kind of questions is by using the axiomatic approach. Namely, by shifting the discussion

from the methods themselves, to the more fundamental level of the properties satisfied by

them. We will say that a scoring method is adequate for some application if it satisfies

properties reasonably required from scoring methods intended for that application.

The axioms we use for our first characterization of the fair-bets scoring method are

uniformity, inverse proportionality to losses, and neutrality. Uniformity requires that if

all players share the same number of wins and losses, they should be uniformly ranked.

Inverse proportionality to losses requires that if in a particular scoring problem the players

are equally ranked and one player’s number of losses against each of his opponents is

multiplied by a given constant, then his score, relative to the score of each one of his

opponents, should be divided by the same constant. Neutrality dictates that if all players

share the same number of wins and losses, and if the scoring function ranks them all

equally, then it should still rank them all equally if any two teams play several more games

against each other which they evenly split. We show that the only scoring function that

satisfies these three properties is the fair-bets scoring function.

The Invariant function is characterized by means of uniformity, invariance to reference

intensity and weak additivity. Invariance to reference intensity requires that the scores

be invariant to multiplication of a web page’s references by a constant. Weak additivity

imposes that if for some very simple problems, those for which all web pages share the

same number of citations and references, the function assigns scores that are proportional

to the number of citations, then it should continue to score in proportion to the number

of citations if a pair of web pages add the same number of mutual links.

Lastly, we provide an additional axiomatic characterization of the fair-bets scoring

function for a class of problems with a variable number of players. The key properties are

reciprocity and consistency. The former says that in two-player problems, the scores should

be proportional to the players’ respective number of victories. The latter is a property that

requires some “consistency” between the ranking of a problem and its reduced problems.

The paper is organized as follows. After setting up the notation in Section 2, we

present the model in Section 3.1. After introducing the fair-bets and the Invariant scoring
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functions, we discuss their intuitive interpretations in Section 3.2. Section 3.3 introduces

several properties of scoring functions, some of which are used in Section 4.1 to characterize

the fair-bets and the Invariant scoring functions. The independence of the axioms is shown

in Section 4.2, and Section 4.3 provides the alternative characterization of the fair-bets

scoring function based on the consistency principle.

2 Notation and Preliminaries

The set of natural numbers is denoted by IN and N denotes the set of finite, nonempty

subsets of IN . For each N ∈ N define ∆N = {(vi)i∈N : vi ≥ 0,
∑

i∈N vi = 1}. Further,

let ∆ =
⋃

N∈N ∆N . For any vector (λi)i∈N , diag(λi)i∈N denotes the diagonal matrix with

(λi)i∈N as its main diagonal. We say that two vectors u and v are proportional, denoted

u ∝ v, if there is a positive real κ such that u = κv. For any vector v ∈ IRn, we denote

‖v‖ =
∑

i |vi|. For any matrix A = (aij), we write ai∗ for the row sum
∑

j aij, and a∗j

for the column sum
∑

i aij. Also, we denote CA = diag(a∗j)j∈N the diagonal matrix whose

diagonal entries are the column sums of A. We say that j ∈ N is reachable from i ∈ N , if

there is a finite sequence i0, . . . , in, with i0 = i and in = j such that
∏n−1

k=0 aik,ik+1
> 0. We

say that i and j communicate if either i = j or if i is reachable from j and j is reachable

from i. It can be checked that the communication relation is an equivalence relation.

Therefore it partitions N into equivalence classes. The matrix A is irreducible if N is the

only element of this partition.

3 The model

3.1 Scoring problems and functions

Let A = (aij)(i,j)∈N×N be a finite nonnegative matrix. As noted in the previous section,

the communication relation partitions the set N into equivalence classes. If N1 and N2 are

two distinct equivalence classes, then one of the following mutually exclusive statements

holds:

1. Every element of N1 is reachable from every element of N2 and no element of N2 is

reachable from any element of N1.
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2. Every element of N2 is reachable from every element of N1 and no element of N1 is

reachable from any element of N2

3. No element of N2 is reachable from any element of N1 and no element of N1 is

reachable from any element of N2.

Each of these three possibilities yields a natural ranking between elements of N1 and

elements of N2: either one is reachable from the other, or they are incomparable. A

non trivial problem is, however, the ranking and scoring of elements within equivalence

classes, since there the elements are reachable from each other. This leads to the following

definition.

A scoring problem is a pair 〈N, A〉, where N ∈ N is a finite set and A is an |N | × |N |
irreducible non-negative matrix.

The set N contains the elements to which we want to assign scores. They can represent

teams, social alternatives, web pages, journals, etc. depending on the interpretation of the

scoring problems. In this paper, generic elements of N will be called players. The matrix A

contains information about the relevant relations among the elements of N , based on which

the scores will be assigned. Examples of scoring problems are tournaments, generalized

tournaments, web page ranking problems, etc. In a generalized tournament, the matrix

A is such that for all i, j ∈ N , i 6= j, aii = 0 and aij + aji = m for some fixed m. In a

tournament, which is a generalized tournament with m = 1, the matrix A is restricted to

be a (0,1)-matrix. The entry aij in the generalized tournament matrix A is interpreted

as the number of victories of player i over player j. In a web page ranking problem the

members of N are interpreted as web pages and the entry aij of the “citation matrix” A is

interpreted as the number links from web page j to web page i.3 In order to avoid confusion

between incoming and outgoing hypertext links, links to page i will be referred to as i’s

citations, and links from page i will be referred to as i’s references. Sometimes we will

use the term “link” to refer to either a citation or a reference. The entries of the matrix

in a journal ranking problem have an analogous interpretation. One can also interpret

a scoring problem more generally as a “tournament,” like the problem of ranking a set

of chess players, in which the players do not necessarily play the same number of times

3Note that in this context, A is the transpose of the adjacency matrix of the WWW graph.
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against each other. Another interpretation would be the problem of ranking a set of social

alternatives where the entry aij represents the number of voters that prefer alternative i

to alternative j.

There are some problems that one may not want to consider. For example, in tourna-

ments, participants do not play against themselves. Similarly, web pages seldom link to

themselves, and if they do, one may not want to take these self-references into account.

Also, in a social choice problem where voters have reflexive preferences, all voters weakly

prefer any alternative to itself. For this reason, in this paper we will restrict attention to

the sublcass S0 of scoring problems 〈N, A〉 such that for all i ∈ N , its main diagonal entry

aii = 0.4 In fact, in the first two results, we will restrict attention to the smaller subclass

S0(N) ⊆ S0 of problems with a fixed player set N . All of our results will remain valid

(with a slight modification in Section 4.3) for the larger class of all scoring problems. The

interpretation of the axioms will not be as natural, though.

We are interested in associating numerical scores, vi ≥ 0, to all players in a scoring

problem, reflecting the strength of the players relative to each other. Since only relative

scores matter, we restrict attention to scoring vectors whose components add up to one.

A scoring function is a function that assigns to each scoring problem S = 〈N, A〉 ∈ S0,

a vector of scores v ∈ ∆N . Here are two examples.

The Invariant scoring function, I, is the function that assigns to each scoring problem

S = 〈N,A〉, the unique scores I(S) = v = (vi)i∈N ∈ ∆N that satisfy

vi =
∑
j∈N

aij

a∗j
vj for all i ∈ N, (1)

or, in matrix notation,

v = AC−1
A v. (2)

The fair-bets scoring function, F , is the function that assigns to each scoring problem

S = 〈N,A〉, the unique scores F (S) = v = (vi)i∈N ∈ ∆N that satisfy

∑
j∈N

ajivi =
∑
j∈N

aijvj for all i ∈ N, (3)

4Note, however, that this restriction should not be applied for ranking journals, since self-references do
matter. See Palacios-Huerta and Volij (2002).
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or, in matrix notation,

CAv = Av. (4)

Note that for all scoring problems S = 〈N,A〉, I(S) ∝ CAF (S). Indeed, v satisfies (4) if

and only if CAv satisfies (2). These two scoring functions were introduced in the literature

by Daniels (1969) and Moon and Pullman (1970). They are well-defined: the Invariant

function selects the unique5 stationary distribution of the irreducible stochastic matrix

AC−1 and, as stated above, the fair-bets vector of scores F (S) is proportional to C−1
A I(S).

Since in every scoring problem S = 〈N,A〉 the matrix A is irreducible, both I(S) and

F (S) are strictly positive vectors. The Invariant method is at the core of the method used

by Google to rank web pages, known as PageRank (see for example Page, Brin, Motwani,

and Winograd (1999)). PageRank adds a perturbation to the Invariant method in order

to deal with irreducible problems.

As mentioned in the introduction, some scoring functions seem more appropriate for

some scoring problems than for others, depending on their respective interpretations. For

example, we will argue that the Invariant scoring function is appealing when the scoring

problem is interpreted as a web page ranking problem, while the fair-bets scoring function

makes more sense when one deals with different kinds of tournaments.

Consider the Invariant scoring function. If the scoring problem represents a web page

ranking problem, then the Invariant score vi of web page i is the weighted sum of the

reference shares that web page i gets from each of the web pages, the weights being the

scores of the respective web pages.

Consider now the fair-bets scoring function. When the scoring problem represents a

tournament, player i’s score is interpreted as the value of a win over i. The fair-bets scores

are chosen so that for each player, the total value of its wins equals the value of its losses.

Note that the Invariant scores are chosen so that the score of web page i can be written

as a function of the citations it gets from the other web pages, and not of the references

it provides. This seems reasonable in the context of web page ranking problems, because

making references is “free”: it does not reduce the number of citations one gets. On the

other hand, the fair-bets scores are chosen so as to balance the values of the wins and

5That every irreducible stochastic matrix have a unique stationary distribution is a standard result in
finite Markov Chain theory. See Kemeny and Snell (1976)
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the losses of each player. In a tournament, winning and loosing are mutually exclusive

outcomes. If you don’t win, you lose.

Example 1 Consider the scoring problem S = 〈N, A〉 where N = {a, b, c, d} and

A =




a b c d

a 0 1 0 1

b 0 0 1 1

c 1 0 0 0

d 0 0 1 0




.

The corresponding graph, ignoring the numerical labels, is shown in Figure 1.
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Figure 1: A scoring problem.

The numbers labeling the edges pointing to node i, represent i’s fair-bets score. For

instance, F (c) = 2 and F (d) = 1. Note that for all i, the sum of the numbers labeling the

incoming edges equals the sum of the numbers labeling the outgoing edges. These common

values appear framed next to the nodes and they represent each node’s Invariant score.

For instance, I(c) = 4 and I(d) = 2.
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3.2 Intuitive interpretation of the two methods

In this subsection we provide two interpretations of the Invariant and fair-bets methods.

The first interpretation is based on simple Markov processes, whereas the other is based

on graph-theoretic concepts.

In the context of web browsing, consider a “random surfer” who keeps clicking on the

pages’ hyperlinks uniformly at random. Then, the long run probability that this random

surfer is at any particular page is precisely this page’s invariant score. Equivalently, a

page’s invariant score is the proportion of time a random surfer visits that page (see Brin

and Page (1998)).

For the fair-bets scores, the interpretation is based on the following “ping-pong” pro-

tocol (see Laslier (1997)). A pair of players play against each other and the odds are given

by the ratio aij/aji. The player who loses cedes his position at the table, and the winner,

say player i, plays the next game with an opponent that is selected randomly according

to the proportions of games played against i. That is, opponent j is selected with prob-

ability
aij+aji

ai∗+a∗i
. The process continues ad infinitum. This defines a Markov process whose

stochastic matrix is (A+diag(ai∗))(diag(ai∗+a∗i))−1, where the ij-entry is the probability

that the next game is played by i, given that player j is currently playing. The stationary

distribution of this Markov process gives the proportion of time that each player remains

at the table. Alternatively, it is the vector of long run probabilities that each player is the

winner. This long run probability has two components. One is related to the chances of

winning once the opponent is selected, and the other component is related to the chances of

being selected, which is itself related to the number of games that the player plays against

other players as given by the matrix A. Note that not all players play the same number

of games according to the matrix A: player i plays ai∗ + a∗i games. Therefore, if we are

interested only in the winning probabilities, we should divide the stationary probabilities

of the above Markov chain by the corresponding number of games. It turns out that the

resulting vector is proportional to the fair-bets scores. Thus, the fair bets score of player i

is his stationary probability of being a winner, divided by the number of games he plays,

properly normalized so that the sum of the scores is one. To see this, let v be the fair-bets
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scores of 〈N, A〉 and consider the matrix A + diag(ai∗). Then,

(A + diag(ai∗))v = Av + diag(ai∗)v

= CAv + diag(ai∗)v

= diag(a∗i + ai∗)v.

But since (A+diag(ai∗))v = (A+diag(ai∗))diag−1(a∗i +ai∗)diag(a∗i +ai∗)v, we obtain that

diag(a∗i +ai∗)v is proportional to the stationary distribution of (A+diag(ai∗))diag−1(a∗i +

ai∗). Thus, v can be viewed as the “per game” stationary distribution.

We now turn to the graph-theoretic interpretation.6 Let S = 〈N, A〉 be a scoring

problem. A directed graph over vertex set N is a set of directed edges E ⊆ N × N . An

i-tree is a directed graph over N , such that for every vertex j ∈ N \ {i}, there is a unique

path from i to j. For each i ∈ N , let Ti denote the set of all i-trees. An i-cycle is a directed

graph C that consists of an i-tree with an additional edge (j, i) for some j ∈ N \ {i}.
In other words, an i-cycle is a set of edges C = T ∪ {(j, i)}, where T is an i-tree and

j ∈ N \ {i}. Denoting by Ci the set of all i-cycles, we have

Ci = {Ti ∪ {(j, i)} : Ti ∈ Ti, j 6= i}. (5)

Note that if C is an i-cycle, then there is j 6= i such that C \ {(i, j)} is a j-tree. Conse-

quently, C can be written as C = Tj ∪ {(i, j)} for some j 6= i and hence it is a j-cycle.

Conversely, if C = Tj ∪ {(i, j)} for some j 6= i, then C is also an i-cycle. As a result we

can write

Ci = {Tj ∪ {(i, j)} : Tj ∈ Tj, j 6= i}. (6)

For any set of directed edges E define

P (E) =
∏

(i,j)∈E

aij

6This interpretation is based on Lemma 3.1 in Freidlin and Wentzell (1998).
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and for each i ∈ N , define the following two values:

ν(i) =
∑
T∈Ti

P (T )

µ(i) =
∑
C∈Ci

P (C).

In the case that S is a tournament, ν(i) and µ(i) are the number of i-trees and i-cycles in

the corresponding tournament graph.

It turns out that (ν(i))i∈N solves (3) and (µ(i))i∈N solves (1). That is, they are pro-

portional to the fair-bets scores and to the Invariant scores, respectively. To see this, note

that, using the equality (5),

∑
C∈Ci

P (C) =
∑
T∈Ti

∑

j 6=i

P (T )aji

=
∑

j 6=i

aji

∑
T∈Ti

P (T )

=
∑

j 6=i

ajiν(i).

Similarly, using (6)

∑
C∈Ci

P (C) =
∑
T∈Tj

∑

j 6=i

P (T )aij

=
∑

j 6=i

aij

∑
T∈Tj

P (T )

=
∑

j 6=i

aijν(j).

Consequently, ∑

j 6=i

ν(i)aji =
∑

j 6=i

ν(j)aij.

The last equality shows that (ν(i))i∈N solves (3). But then, it follows that (
∑

j 6=i ν(i)aji)i∈N

solves (1). And since µ(i) =
∑

C∈Ci
P (T ) =

∑
j 6=i ν(i)aji we have that (µ(i))i∈N solves (1).

It follows that, in particular, when S = 〈N, A〉 is a tournament, the fair-bets scoring

12



function ranks the nodes of S by the number of spanning trees rooted at them, whereas

the Invariant scoring function ranks the nodes by the number of r-cycles rooted at nodes

r ∈ N .

3.3 Properties of scoring functions

In this section we state several simple properties of scoring functions that one might rea-

sonably require. We may find some properties to be more appealing than others depending

on the application at hand. These properties will be used in our axiomatizations in the

remainder of the paper.

A scoring problem S = 〈N, A〉 is balanced if for all i ∈ N, ai∗ = a∗i. It is regular if in

addition, for all i, j ∈ N, ai∗ = aj∗.

In the context of web page ranking problems, a balanced problem is one where each

web page’s number of citations equals its number of references. If the scoring problem

represents a tournament, balancedness of a problem means that for each player, the number

of victories equals the number of losses. If, in addition, for all players the number of

victories (and losses) are the same, then the problem is regular.

Definition 1 A scoring function, f , is uniform if for all regular problems S = 〈N, A〉, we

have f(S) = (1/|N |)i∈N .

Uniformity of a scoring function requires that if all players (web pages) have the same

number of wins (citations) and the same number of losses (references), then they should

be all equally ranked. For the record, we state without proof the following lemma:

Lemma 1 Both the fair-bets and the Invariant scoring functions are uniform.

One can strengthen uniformity in the following way:

Definition 2 A scoring function, f , is strongly uniform if for all balanced problems S =

〈N, A〉, we have f(S) = (1/|N |)i∈N .
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The strong uniformity of a scoring function is more appealing when the scoring problem

represents a tournament. It says that if each player’s wins/losses ratio is 1, then they should

all be ranked equally.

Lemma 2 The fair-bets scoring function is strongly uniform.

Proof : Let S = 〈N,A〉 be a balanced scoring problem. Its fair-bets scores (vi)i∈N are

the only ones that satisfy

∑
j

ajivi =
∑

j

aijvj for all i ∈ N.

But since S is balanced, we have
∑

j aji =
∑

j aij for all i ∈ N , and hence the vector

v = (1/|N |)i∈N solves the above equation. 2

Definition 3 A scoring function, f , is neutral if for all regular scoring problems 〈N, A〉 and

for all symmetric matrices B whose main diagonal entries are all 0, and for which 〈N,A+B〉
is also a scoring problem, if f(〈N, A〉) = (1/|N |)i∈N , then f(〈N,A + B〉) = (1/|N |)i∈N .

Neutrality is an appealing property in the context of generalized tournaments. It says

that if the players in a regular scoring problem are ranked equally, then if we add some

more games, and each player wins half of the additional games he plays and losses the

other half, then the players should remain equally ranked.

The next lemma shows the relationship between neutrality, uniformity and strong uni-

formity.

Lemma 3 The scoring function f is uniform and neutral if and only if f is strongly

uniform.

Proof : It is clear that strong uniformity implies uniformity. Also, since by adding a

symmetric matrix to the matrix of a regular problem one gets a balanced problem, strong

uniformity implies neutrality. To show the other direction, let f be a uniform and neutral
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scoring function and let S = 〈N, A〉 be a balanced scoring problem with |N | > 2 (if |N | ≤ 2,

then S is regular and there is nothing to prove). Let b = max{aij : i, j ∈ N} and define

the non-negative and symmetric matrix B = (bij) as follows:

bij =





0 if i = j

b− aij + aji

2
otherwise.

The scoring problem S ′ = 〈N, A + B〉 is regular. Indeed, for any i ∈ N

∑

j 6=i

(aji + bji) =
∑

j 6=i

(aij + bij) =
∑

j 6=i

(aij + b− aij + aji

2
)

=
∑

j 6=i

(b +
aij − aji

2
)

= (n− 1)b.

By uniformity of f we have f(〈N, A + B〉) = (1/|N |)i∈N . But since A = (A + B) + (−B),

by neutrality of f , f(〈N, A〉) = (1/|N |)i∈N . 2

As a result we have the following:

Corollary 1 The fair-bets scoring function is neutral.

Proof : An immediate consequence of Lemma 2 and Lemma 3. 2

The following property is appealing in the context of web page ranking problems. It

says that if web pages are ranked in proportion to their number of citations in a regular

problem, they should still be ranked according to their number of citations after some pairs

of web pages exchange equal number of mutual extra links. Formally,

Definition 4 A scoring function, f , is weakly additive if for all regular scoring problems

〈N, A〉 and for all symmetric matrices B whose main diagonal entries are all 0, and for

which 〈N, A + B〉 is also a scoring problem, if f(〈N, A〉) ∝ (ai∗)i∈N , then f(〈N,A + B〉) ∝
(ai∗ + bi∗)i∈N .
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Lemma 4 The Invariant scoring function is weakly additive.

Proof : Let S = 〈N, A〉 be a regular scoring problem such that I(S) ∝ (ai∗)i∈N , and let

B be an |N | × |N | matrix, with 0 as its main diagonal entries, such that S ′ = 〈N, A + B〉
is a scoring problem. Since S is regular, by Lemma 1, F (S) = (1/|N |)i∈N , and since

F satisfies neutrality, F (S ′) = (1/|N |)i∈N and as a result I(S ′) ∝ CA+BF (S ′) = (CA +

CB)(1/|N |)i∈N ∝ (a∗j + b∗j)j∈N . 2

Definition 5 A scoring function, f , is invariant to reference intensity if for all scoring

problems S = 〈N, A〉 and for all |N | × |N | diagonal matrices Λ with positive diagonal

entries, we have

f(N,A) = f(N, AΛ).

This property makes sense if the scoring problem represents a web page ranking prob-

lem. It says that if the references of a web page are multiplied by a positive number, the

scores and resulting ranking should not change. In other words, a web page should not be

able to affect the ranking simply by multiplying its references by a constant.

An analogous property that is more relevant in the context of tournaments, is the

following.

Definition 6 A scoring function, f , is inversely proportional to losses if for all balanced

scoring problems 〈N, A〉 such that f(N,A) = (1/|N |)i∈N , and for all (λi)i∈N À 0 we have

fi(〈N, A diag(λi)i∈N〉)
fj(〈N, A diag(λi)i∈N〉) =

λj

λi

for all i, j ∈ N,

or in matrix notation,

f(〈N, A diag(λi)i∈N〉) ∝ (
1

λi

)i∈N .

This property requires that if in a given balanced problem all players are equally ranked,

and if one player’s losses are multiplied by a constant, its relative score should be divided

by that constant.
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Lemma 5 The Invariant scoring function is invariant to reference intensity.

Proof : Let S = 〈N, A〉 and S ′ = 〈N, AΛ〉 be two scoring problems where Λ = diag(λi)i∈N

for some positive vector (λi)i∈N . Let (v′i)i∈N = I(S ′). Then, by definition

v′i =
∑

j

λjaij

λja∗j
v′j for all i ∈ N,

or equivalently,

v′i =
∑

j

aij

a∗j
v′j for all i ∈ N.

But then (v′i)i∈N = I(S), which proves that I is invariant to reference intensity. 2

Lemma 6 The fair-bets scoring function is inversely proportional to losses.

Proof : We will prove a stronger claim. Namely, that the player’s relative scores awarded

by the fair-bets scoring function are homogeneous of degree -1 in the player’s column.

Let S = 〈N,A〉 be a scoring problem and let Λ = diag(λi)i∈N be a diagonal matrix

with positive main diagonal. Since I is invariant to reference intensity, we have that

I(〈N,AΛ〉) = I(〈N, A〉) which holds if and only if CAΛF (〈N, AΛ〉) ∝ CAF (〈N,A〉), which

holds if and only if F (〈N,AΛ〉) ∝ Λ−1F (〈N, A〉), where we use the fact that CAΛ = CAΛ.

Therefore, F is inversely proportional to losses. 2

4 The main results

4.1 Two dual axiomatizations

We can now state our first result.

Theorem 1 Let N ⊆ IN be a finite set of at least two players. The fair-bets is the

only scoring function defined on S0(N) that satisfies uniformity, neutrality and inverse

proportionality to losses.

17



Proof : It was already shown that the fair-bets scoring function satisfies the three

properties. In order to show that it is the only scoring function that does so let f be

a scoring function that satisfies the three properties and let S = 〈N, A〉 be a scoring

problem. Let v = (vi)i∈N = F (S). We need to show that f(S) = v. Consider the auxiliary

scoring problem S ′ = 〈N,Adiag(v)〉. Since (vi)i∈N are the fair-bets scores of S, we have∑
j ajivi =

∑
j aijvj for all i ∈ N , which means that S ′ is a balanced scoring problem.

Consequently, since by Lemma 3 f is strongly uniform, f(S ′) = (1/|N |, . . . , 1/|N |). Since

f is inversely proportional to losses, we have that

f(S) = f(N,A diag(v)(diag(v))−1) ∝ (vi)i∈N = F (S). (7)

Since f(S) and F (S) are in ∆N , f(S) = F (S). 2

Corollary 2 Let N ⊆ IN be a finite set of at least two players. The Invariant function is

the only scoring function defined on S0(N) that is uniform, weakly additive and invariant

to reference intensity.

Proof : We have already proved that the Invariant scoring function satisfies the three

properties. Therefore, we need to show that it is the only one that does so. If two scoring

functions f1 and f2 are uniform, weakly additive and invariant to reference intensity, then

the scoring functions g1 and g2 defined by

gi(〈N,A〉) =
C−1

A fi(〈N, A〉)
‖C−1

A fi(〈N, A〉)‖ i = 1, 2

both satisfy uniformity, neutrality and inverse proportionality to losses. By Theorem 1, g1

and g2 are the same function, which implies that f1 and f2 are the same. 2

4.2 Independence of the axioms

Next we show that the properties that characterize the Invariant scoring function in Corol-

lary 2 are logically independent, namely no two properties imply the third one.
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1. Consider the scoring function f that assigns to each scoring problem S = 〈N,A〉
the scores f(S) ∈ ∆N such that f(S) ∝ (ai∗)i∈N . It is easily seen that this function

satisfies uniformity and weak additivity. It does not satisfy invariance to reference

intensity.

2. Consider the function g that assigns to each scoring problem S = 〈N, A〉 the scores

g(S) ∈ ∆N such that g(S) ∝ (
∑

j∈N
aij

a∗j
)i∈N . It is easily checked that g satisfies uni-

formity and invariance to reference intensity. Since g 6= I, it follows from Corollary 2

that g does not satisfy weak additivity.

3. Consider the function h that assigns to each scoring problem S = 〈N, A〉 the scores

h(S) ∈ ∆N such that h(S) ∝ (i
∑

j∈N
aij

a∗j
)i∈N . It can be seen that h satisfies weak

additivity (trivially) and invariance to reference intensity, but it does not satisfy

uniformity.

The fact that the three properties that we used in Theorem 1 to characterize the fair-bets

scoring function are independent, can be easily checked using the functions ϕ, φ and ψ

defined as follows: ϕ(S) =
f(S)C−1

A

‖f(S)C−1
A ‖ , φ(S) =

g(S)C−1
A

‖g(S)C−1
A ‖ , and ψ(S) =

h(S)C−1
A

‖h(S)C−1
A ‖ .

4.3 An alternative axiomatization

Note that in the characterizations presented in Section 4.1, the class of problems can be

taken as the set of all scoring problems in S0 with a fixed set of agents. In the following

characterization, a variable number of agents is needed. More precisely, the class of prob-

lems should be such that whenever it contains all the scoring problems in S0 with a fixed

set of agents, N , it also contains all the problems with any nonempty subset of N .

In the context of journal citations, Palacios-Huerta and Volij (2002) characterize the

Invariant function using the axioms of weak homogeneity and weak consistency, along with

invariance to reference intensity. By strengthening the weak homogeneity and consistency

axioms, we can present an alternative characterization of the fair-bets scoring function.

Definition 7 A scoring function, f , satisfies reciprocity, if for all two-player scoring prob-

lems S = 〈{i, j}, A〉, fi(S)/fj(S) = aij/aji.
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Reciprocity requires that in two-player problems, the relative scores of the players be

their relative number of victories. 7 It is a very weak requirement.

In order to define consistency, we need the following definition. Let S = 〈N, A〉 ∈ S0 be

a scoring problem with at least three players and let k be one of the players. The reduced

scoring problem with respect to k is given by Sk = 〈N \{k}, Ak〉 where Ak = (ak
ij) is defined

by

ak
ij =





0 if i = j

aij +
aikakj∑
t∈N atk

otherwise.

The reduced problem with respect to k consists of all the players in the original scoring

problem, except for k, and a modified (|N | − 1)× (|N | − 1) matrix. It summarizes all the

inter-relations between the players of the original problem except for player k, including

their indirect relationships through player k. The idea is to describe these relationships

using a matrix that, though smaller than the one in the original scoring problem, still

contains all the relevant information. In order to account for the influence of k, we add

the term
aikakj∑
t∈N atk

to each of the entries aij, i, j 6= k, i 6= j, of the original matrix.

In the context of generalized tournaments the entry aij represents the number of times

that j was defeated by i. If we delete k’s row, and in particular if we delete the entry

akj, we omit the information about the “indirect victories” of each of the players over j

via k. To compensate for this omission, we take the entry akj and distribute it among the

players in proportion to their respective number of victories over k. In particular, if player

i recorded no victories over player k, he receives no share of this distribution.

The reduced problem with respect to player k intends to reflect the relationships of

the players in N \ {k} in the original scoring problem. If it does so, it would be natural

to require from a scoring function to assign the players the same relative scores in both

problems. This is precisely the consistency requirement that we define next.

Definition 8 The scoring function f satisfies consistency if for all scoring problems S =

〈N, A〉 with at least three players and for all k ∈ N ,

fi(S
k)

fj(Sk)
=

fi(S)

fj(S)
for all i, j 6= k.

7Note that since A is irreducible, this ratio is well-defined.
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The consistency principle has been extensively applied in the axiomatic literature. See

Thomson (2000) for a comprehensive survey on consistency.

Theorem 2 The fair-bets scoring function is the unique scoring function on S0 that sat-

isfies reciprocity and consistency.

Proof : We show first, by induction, that there cannot be two functions that satisfy the

two properties. Suppose that both f and g satisfy the two properties and coincide for all

n-player scoring problems. Since f and g satisfy reciprocity, this is true for n = 2. Let

S = 〈N,A〉 be an (n+1)-player problem. Let k ∈ N and let i, j ∈ N \{k}. By consistency

of f and g, we have
fi(S)

fj(S)
=

fi(S
k)

fj(Sk)
=

gi(S
k)

gj(Sk)
=

gi(S)

gj(S)
.

Since i and j were chosen arbitrarily, this implies that f(S) = g(S).

It remains to show that the fair-bets scoring function satisfies both axioms. That

it satisfies reciprocity is easy to check and is left to the reader. To see that it satisfies

consistency, let S = 〈N,A〉 be a scoring problem with at least three players and let (vi)i∈N

be the corresponding fair-bets scores. That is,

∑
j∈N

ajivi =
∑
j∈N

aijvj for all i ∈ N. (8)

Let k ∈ N and consider the reduced scoring problem Sk. We need to show that F (Sk) ∝
(vi)i∈N\{k}. It is enough to show that

∑

j∈N\{k}
ak

jivi =
∑

j∈N\{k}
ak

ijvj for all i ∈ N \ {k}.

First note that

∑

j∈N\{k}
ak

jivi =
∑

j∈N\{i,k}
(aji +

ajkaki∑
t∈N atk

)vi

=
∑

j∈N\{k}
(aji +

ajkaki∑
t∈N atk

)vi − aikaki∑
t∈N atk

vi
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=
∑

j∈N\{k}
ajivi + aki

∑
j∈N

ajk∑
t∈N atk

vi − aikaki∑
t∈N atk

vi

=
∑
j∈N

ajivi − aikaki∑
t∈N atk

vi.

Next,

∑

j∈N\{k}
ak

ijvj =
∑

j∈N\{i,k}
(aij +

aikakj∑
t∈N atk

)vj

=
∑

j∈N\{k}
(aij +

aikakj∑
t∈N atk

)vj − aikaki∑
t∈N atk

vi

=
∑

j∈N\{k}
aijvj + aik

∑
j∈N akjvj∑

t∈N atk

− aikaki∑
t∈N atk

vi

=
∑

j∈N\{k}
aijvj + aik

∑
j∈N ajkvk∑

t∈N atk

− aikaki∑
t∈N atk

vi

=
∑
j∈N

aijvj − aikaki∑
t∈N atk

vi.

The previous to last equality follows from the fact that, by equation (8),
∑

j∈N\{k} akjvj =∑
j∈N\{k} ajkvk. Using equation (8) again, we get the desired result. 2

Remarks:

1. The class of problems can be restricted to ∪N ′⊆NS0(N
′) for some N ′ ∈ N .

2. The axioms used in the above characterization are logically independent: the Invari-

ant scoring function satisfies reciprocity but does not satisfy consistency; and the

scoring function that assigns to every scoring problem 〈N, A〉 the vector (1/|N |)i∈N

satisfies consistency but does not satisfy reciprocity.
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