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Abstract

Consider the problem of ranking social alternatives based on the number of
voters that prefer one alternative to the other. Or consider the problem of
ranking chess players by their past performance. A wide variety of ranking
methods have been proposed to deal with these problems. Using six indepen-
dent axioms, we characterize the fair-bets ranking method proposed by Daniels
[4] and Moon and Pullman [14].

Keywords: Tournaments, ranking and scoring methods, Perron-Frobenius the-
orem, Birkhoff’s theorem.

1 Introduction

A tournament is a pair 〈N,A〉 where N is a finite set of at least two elements, which we will

call players, and A is a zero-one matrix, such that its diagonal entries are zeroes and for

all i, j ∈ N , i 6= j, aij +aji = 1. The interpretation is that each pair of players in N played

each other once, and aij = 1 if, and only if, i beat j. Tournaments arise naturally in many

contexts. Clearly, sports events are the first ones that come to mind but they also arise
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in the context of social choice [Arrow (1963), Sen (1970), Moulin (1988)], and in statistics

[David (1987), David (1988)]. For example, if N represents a set of social alternatives,

then A can represent the majority rule binary relation: aij = 1 if there is a majority of

voters that prefer i to j, and aij = 0 otherwise. See Moon (1968) and Laslier (1997) for a

comprehensive treatment of tournaments including more applications and examples.

Researchers have been interested in both cardinal and ordinal aspects of tournaments,

as well as of more general structures. Scoring methods are intended to capture the cardinal

aspect by assigning a numerical score to each participant in a tournament. Such a score

presumably quantifies how good each of the players is relative to other players. Ranking

methods, on the other hand, intend to capture the ordinal aspect of a tournament by

assigning a ranking of the players. By contrast to a scoring method, a ranking method

does not convey any quantitative information as to how much better a player is relative to

another, just the mere fact that one player is better than another.

Much work has been done on scoring systems and ranking methods. Early references

include Zermelo (1929), Wei (1952), Kendall (1955), Daniels (1969), Moon and Pullman

(1970). Since this pioneering work, the literature on ranking methods has expanded sig-

nificantly, both in terms of quantity and scope.1

Rubinstein (1980) characterized the ranking method that ranks players in a tournament

according to the number of their respective victories, also known as Copeland scores.2 This

method, which was called the points system, treats all victories equally. A nice feature of

Rubinstein’s characterization is that it is in terms of a fixed, rather than variable, set of

players.

Daniels (1969) and Moon and Pullman (1970) proposed another method for ranking

players in a tournament, which we call the fair-bets method, according to which beating

highly ranked players is more valuable than beating low ranked players.3 In this paper

we look for axioms that characterize the fair-bets ranking method. In order to do so we

1See for instance Kano and Sakamoto (1985), David (1987), Keener (1993), Levchenkov (1995), van den
Brink and Gilles (2000), Herings, van der Laan, and Talman (2004), Palacios-Huerta and Volij (2004),
Conner and Grant (2000), as well as the comprehensive texts of David (1988) and Laslier (1997).

2Henriet (1985) and van den Brink and Gilles (2000) provided, later on, alternative characterizations.
See also Bouyssou (1992)

3The method was originally defined for irreducible tournaments, but it can be extended in a straight-
forward way to a method where the tournament is not irreducible.
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need to extend the class of problems over which the methods are defined to more general

kinds of tournaments. Specifically, we allow for problems in which different pairs may have

different number of encounters, possibly none. Further, for reasons that have to do with

the axioms we use, we cannot restrict attention to a fixed set of players, but must also

consider its subsets. We now turn to the description of our axioms.

Rubinstein (1980) required a method to exhibit positive responsiveness with respect to

the beating relation. Specifically, the requirement is that switching a player’s loss to a win

cannot have a negative effect on that player’s rank, and must have a positive effect if he

was tied with some other player. Although the fair-bets method satisfies this property (see

Laslier (1997), pp. 59–62 or Levchenkov (1992)), it does not seem to help in characterizing

the method. Instead, we use an axiom, called negative responsiveness to losses, which re-

quires that under certain circumstances, multiplying a player’s losses by a constant greater

than one has a negative impact on his rank. Note that this operation takes us out of

the class of tournaments, i.e., the class of tournaments is not closed under multiplication

of a player’s losses by a constant. This technical reason forces us to enlarge the class of

problems under consideration.

In a previous paper, Slutzki and Volij (2004) characterized the fair-bets scoring method

for the class of irreducible problems. One of the crucial axioms used there states that all

players receive the same score in a particular class of simple problems, namely, the class

of strongly balanced problems.4 In this paper we replace this arguably strong axiom by

the more appealing property of anonymity. This replacement, however, comes at the cost

of a further enlargement of the class of problems that need to be considered. For the full

power of anonymity to be utilized, we have to consider some reducible problems, namely

those in which there are several unconnected “leagues.” This extension allows us to apply

Birkhoff’s theorem on doubly stochastic matrices which, together with anonymity, enables

us to conclude that in strongly balanced problems all players must be equally ranked.

Another axiom we use is separability. This axiom allows us to rank players in a given

league independently of the outcomes in other leagues. Specifically, separability allows us

to rank the players in a given league by regarding it as a separate ranking problem. Since

a league consists of a particular subset of players and its corresponding bilateral outcomes,

4A problem is strongly balanced if all the players have the same number of wins and the same number
of losses.
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this axiom forces us to consider not only a given set of players but also its subsets.

Another crucial axiom is quasi-flatness preservation which says that if in two ranking

problems (with the same set of players), any two players are either equally ranked or

incomparable, the same should be true if we merge the two problems into a single one.

Finally, the last two axioms deal with the fact that the class of problems we consider

includes reducible ones. Since in some problems there might not be enough grounds for

comparison between two players, one should not expect a ranking method to deliver a

complete order of the participants for all problems. The axiom of quasi-completeness

allows the method to “declare” two players as incomparable precisely when they have

never played against each other, and there is no chain of comparisons that leads from one

of the players to the other. The axiom of dominance, on the other hand, requires that the

ranking of the participants respects the ranking of the leagues induced by the problem. In

other words, all players in a league should rank above all players in a lower league.

The paper is organized as follows. Section 2 presents the model, section 3 introduces

the ranking methods that are the focus of the paper, section 4 offers the characterization

of the fair-bets method and section 5 shows the independence of the axioms.

2 The Model

Let IN = {1, 2, . . .} be the set of potential players. A (ranking) problem is a pair 〈N,A〉
where N ⊆ IN is a finite set of players and A is a |N | × |N | non-negative integer matrix

whose main diagonal consists of zeroes. For any i, j ∈ N , the entry aij represents the

number of times player i beat player j. For i ∈ N , we denote by ai∗ =
∑

j∈N aij and

a∗i =
∑

j∈N aji the total number of victories and the total number of losses, respectively,

of player i. Also, we let CA = diag{a∗i}i∈N denote the diagonal matrix whose i-th main

diagonal entry is player i’s total number of losses. We denote by A the set of all problems.

Given a ranking problem 〈N, A〉, we say that i beat j if aij > 0. We say that i beat j

indirectly, denoted i → j, if there is a finite sequence i0, i1, . . . , iT , with i0 = i and iT = j,

such that
∏T−1

t=0 aitit+1 > 0. Note that for T = 0,
∏T−1

t=0 aitit+1 = 1 so that “→” is a reflexive

relation. Also note that “→” is the transitive and reflexive closure of the “beat” relation.

We say that player i belongs to the same league as player j, denoted i ↔ j, if i → j and

j → i. It can be checked that ↔ is an equivalence relation and therefore it partitions
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the set N of players into equivalence classes. We call these equivalence classes leagues,

and denote the league that contains player i by [i]. If the problem 〈N,A〉 consists of only

one league, namely if N constitutes a league, then we say that the problem 〈N,A〉 as

well as the matrix A are irreducible. We denote by AI the set of all irreducible problems.

Define the following relation between leagues. Given two players i, j ∈ N , we say that i’s

league is higher than j’s league, denoted by [i] 7→ [j], if and only if i → j and not j → i.

This induces an irreflexive and transitive relation on the leagues. Two distinct leagues are

incomparable if neither is higher than the other. For all i ∈ N , the sub-problem of [i] is

defined to be the problem R[i] = 〈[i], A[i]〉, where A[i] is the sub matrix of A restricted to

the players in [i].

A matrix A is said to be balanced, if for all i, ai∗ = a∗i. It is strongly balanced if in

addition there is a constant k > 0 such that for all i, a∗i = k. We say that a problem

R = 〈N, A〉 ∈ A is (strongly) balanced, if A is (strongly) balanced, and that league [i] is

(strongly) balanced if the matrix A[i] is (strongly) balanced.

We end this section with the following lemma, which states a useful relationship between

the balancedness of a problem and the balancedness of its leagues. The proof is in the

appendix.

Lemma 1 Let R = 〈N,A〉 be a problem. R is balanced if and only if its leagues are

incomparable and each one is balanced.

3 Ranking Methods

Given a problem 〈N,A〉, we are interested in ranking the players in N based on the

information contained in A. A ranking of N is a binary relation on N that is reflexive and

transitive. We denote the set of all rankings of N by RN . Given a ranking º of N , we

define the following associated relations:

• i is ranked above j, denoted i Â j, if i º j but not j º i,

• i and j are equally ranked, denoted i ∼ j, if i º j and j º i,
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• i and j are incomparable, denoted i ⊥ j, if neither i º j nor j º i.

A ranking º of N is quasi-flat if for all pairs of players i, j ∈ N , either i ∼ j or i ⊥ j.

It is flat if for all pairs of players i, j ∈ N , i ∼ j.

A (ranking) method is a function º: A → ∪N⊆INRN that associates with each problem

R = 〈N, A〉 a ranking, ºR , of N .

We now introduce two examples of methods, defined only on the class of irreducible

problems AI . We will see later that there is a natural way to extend methods defined on

AI to the whole class of problems A.

Example 1 The fair-bets method.

Let R = 〈N, A〉 be an irreducible problem. Recall that CA = diag{a∗i}i∈N . Since A is an

irreducible matrix, so is C−1
A A. By the Perron-Frobenius theorem5, C−1

A A has a unique

(up to a positive scalar multiplication) positive eigenvector v = (vi)i∈N . The components

of this eigenvector satisfy the following system of homogeneous linear equations:

∑
j∈N

aijvj =
∑
j∈N

ajivi i ∈ N. (1)

Call the entries of this eigenvector the fair-bets scores of R. We can use these fair-bets

scores to rank the players in R. Formally, the fair-bets method on the class of irreducible

problems is the function ºfb: AI → ∪N⊆INRN such that for all R = 〈N, A〉 ∈ AI ,

i ºfb
R j if and only if vi ≥ vj

where (vk)k∈N is a positive eigenvector of C−1
A A.

The idea behind the fair-bets method for irreducible problems, as defined in equation

(1), can be illustrated in terms of systems of bets. A list of non-negative numbers v =

(v1, . . . , vn) may be viewed as a system of bets in the following sense. A bet on i is a

contract whereby the bettor gets $vj each time player i beats player j and he pays out $vi

each time player i loses regardless of i’s opponent’s identity. The bet on i is fair if the total

5The reader is referred to Minc (1988) for an excellent treatment of the theory of non-negative matrices.
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payment due to i’s losses equals the total revenue obtained from i’s victories. A system

v = (v1, . . . , vn) of bets is fair if the associated bets on each player are all fair. Given a fair

system of bets, v = (v1, . . . , vn), we can rank the players according to their respective vi’s.

It turns out that given an irreducible problem, all the fair systems of bets induce the same

ranking on the set of players. Moreover, the fair-bets method ranks the players precisely

according to this unique ranking.

Example 2 The dual fair-bets method.

Define the dual fair-bets method ºdfb: AI → ∪N⊆INRN as follows. For all R = 〈N,A〉 ∈ A,

i ºdfb
R j if and only if j ºfb

RT i

where RT = 〈N,AT 〉 is the “transposed” problem, where victories are treated as losses and

losses are treated as victories.

To illustrate the above methods, let us consider the four-player tournament R = 〈N,A〉
where N = {1, 2, 3, 4} and A is given by




0 1 1 0

0 0 1 1

0 0 0 1

1 0 0 0




.

The points system would rank participants 1 and 2 equally and above participants 3 and

4, who would also be ranked equally. This is because both players 1 and 2 have two wins

while players 3 and 4 have only one win. Noting that (v1, v2, v3, v4) = (4, 3, 1, 2) constitutes

a fair system of bets, namely it solves

∑
j∈N

aijvj =
∑
j∈N

ajivi i ∈ N,

we conclude that the fair-bets method ranks the players as follows: 1 ºfb
R 2 ºfb

R 4 ºfb
R 3.

On the other hand, since (v1, v2, v3, v4) = (2, 1, 3, 4) constitutes a fair system of bets for
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the “transposed” problem 〈N, AT 〉, namely it solves

∑
j∈N

ajivj =
∑
j∈N

aijvi i ∈ N,

we have that 2 ºdfb
R 1 ºdfb

R 3 ºdfb
R 4 is the ranking of the players according to the dual

fair-bets method.

Note that the fair-bets method seems to give more weight to wins against better players

than to losses against worse players. The dual fair-bets method, on the other hand, seems to

do just the opposite. Consider the above tournament. According to the fair-bets method,

player 4’s win against player 1 has more weight than his loss against player 3, and player

1’s loss to player 4 has less impact than his win against player 2. According to the dual

fair-bets method, on the other hand, player 4’s win against player 1 has less weight than

his loss against player 3, and player 1’s loss to player 4 has more impact than his win

against player 2.

4 A characterization of the fair-bets method

We now present some properties that we would expect methods to satisfy. The first

three properties relate players that belong to different leagues and will allow us to extend

a method defined on irreducible problems to a larger class of problems. The first two

properties ensure that methods respect the “higher than” ordering of the leagues. The

axioms are stated for an arbitrary method º.

Dominance: For every problem R = 〈N,A〉 ∈ A, and for all players i, j ∈ N ,

[i] 7→ [j] implies i ÂR j.

This property says that if one league is higher than another one, then all players in the

former should be ranked strictly above all the players in the latter.

Another basic property that we require is the following.
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Quasi-completeness: For all problems R = 〈N, A〉 ∈ A and for all players i, j ∈ N ,

i 6→ j and j 6→ i, if and only if, i ⊥R j.

This property says that two players are incomparable if, and only if, neither of them

beat the other one indirectly. In order for two players to be comparable there must be

some grounds for indirect comparison, and, moreover, if at least one player indirectly beat

the other, then the method must rank them.

Given the above two axioms, any two players belonging to different leagues will be either

ranked one above the other, according to the relation between their respective leagues, or

be incomparable if their leagues are. The only aspect that may distinguish among methods

that satisfy the above two properties is the way they rank players within the same league.

Before we state the next property we need some notation.

Given a ranking ºR of the players in N , we denote by ºR|[i] the restriction of ºR to the

players in [i]. The next requirement imposes some consistency on the method. Specifically,

the ranking of players within one league should be independent of the matches played by

members of the other leagues.

Separability: For all problems R = 〈N,A〉 and for all players i ∈ N , ºR|[i] =ºR[i]
.

Note that this axiom relates problems with different sets of players.

Dominance and quasi-completeness allow us to determine the ranking of players be-

longing to different leagues. Separability implies that in order to rank two players in the

same league, it is sufficient to focus on that league.

Once we adopt the three axioms discussed above, we only need to focus on irreducible

problems. Formally, given a method º: AI → ∪N⊆INRN defined on the class of irreducible

problems, there is a unique extension, º̂, of º to the class of all problems A that satisfies

dominance, quasi-completeness, and separability. This extension is defined as follows. For

all R = 〈N,A〉 ∈ A, and all i, j ∈ N

if [i] = [j], then i º̂R j ⇔ i ºR[i]
j

if [i] 7→ [j], then i º̂R j

if [j] 7→ [i], then j º̂R i
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otherwise, i ⊥̂R j.

This method is the only one that satisfies dominance, quasi-completeness and separability,

and coincides with º over the class of irreducible problems. We refer to this method as

the natural extension of º, and, with some abuse of notation, denote it by º.

As a result of the above discussion we can define the fair-bets method to be the natural

extension of the method ºfb defined in Example 1. Similarly, we define the dual fair-

bets method to be the natural extension of the method ºdfb defined in Example 2. Since

they are natural extensions, these methods satisfy dominance, quasi-completeness, and

separability.

The following axioms refer to problems with a fixed set of players, and will allow us to

pin down a unique way to rank players in the same league.

Given a problem R = 〈N, A〉 ∈ A and a permutation σ : N → N , define the matrix

σA by (σA)ij = Aσ(i),σ(j), and the problem σR by σR = 〈N, σA〉.
Anonymity. For all R = 〈N,A〉 ∈ A and all permutations σ : N → N , σ(i) ºR σ(j)

implies i ºσR j .

Anonymity is a standard property that requires that the method be independent of the

names of the players.

The next axiom deals with the question of how to aggregate two problems with the

same set of participants.

Quasi-flatness Preservation. Let R1 = 〈N, A〉 and R2 = 〈N, B〉 be two problems and

let R = 〈N, A + B〉 be the combination of the two. Assume that ºR1 is quasi-flat. Then

ºR2 is quasi-flat if and only if ºR is quasi-flat.

Quasi-flatness preservation requires that if two problems are such that the method

cannot rank any player above another, then the method should still be unable to rank one

player above another when consolidating the two problems into a single problem. And

conversely, if two problems are such that in the first one the method does not rank one

player above another, but in the second problem there are two players that are strictly

ordered, then, when considering the two problems together, there should be at least two

players who are ranked one above the other.

Note that quasi-flatness preservation implies the following property:
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Weak Homogeneity. For all problems R = 〈N,A〉 and all integers k > 0, if ºR is

quasi-flat, then so is ºkR , where kR = 〈N, kA〉.
The last axiom requires that in some particular cases, increasing proportionally all the

losses of one player should have a negative effect on his ranking.

Negative Responsiveness to Losses. Let R = 〈N,A〉 ∈ AI be an irreducible problem

such that ºR is flat, and let Λ = diag(λi)i∈N be a diagonal matrix such that (λi)i∈N À 0,

and 〈N,AΛ〉 ∈ A. Then i º〈N,AΛ〉 j if and only if λi ≤ λj.

Negative responsiveness to losses requires that if all players are equally ranked in some

irreducible problem, and a new problem is obtained by multiplying each player’s losses by

some positive constant (which may be different for each player), then the players should be

ranked in the new problem in a way that is inversely related to these constants: the larger

the constant by which a player’s losses have been multiplied, the lower his new rank. To

motivate this requirement, let f be a method, 〈N, A〉 an irreducible problem, and 〈N, A′〉
a problem obtained from 〈N, A〉 by multiplying the i-th column of A by an integer λi > 1.

Denote f(N,A) and f(N, A′) by º and º′ respectively. Since an increase in player i’s losses

should negatively impact his standing more any other player’s, we should have that if j º i

then, j º′ i for all j. Indeed, the increase in i’s losses should negatively impact player i’s

standing more than any other player’s. The question is how the relative ranking of the

players other than i should be affected by the above modification. Note first that neither

player i’s vector of wins nor the distribution of his losses has changed. Therefore, if one

takes the view that player i’s ranking derives from his victories over the other players, and

that the value of those victories should be indirectly distributed among the other players

proportionally to their victories over i, it would be reasonable to require that the relative

ranking of any two players other than i not change by the above modification. That is,

the value of player i’s victories, whose number has not changed, is distributed among the

other players in the same proportions as before. The axiom of negative responsiveness to

losses is an expression of the above idea when iterated several times. If f ranks all players

equally in some problem (N,A), and if player j’s column in A is multiplied by some integer

λj ≥ 1, for all players j ∈ N , then the new ranking should be inversely related to the value

of the λjs. The rationale is that multiplying j’s losses affects only his relative ranking vis

a vis the rest of the players, and not the other players’ ranking relative to each other.
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We can now state the main result of the paper.

Theorem 1 The fair-bets method ºfb is the unique method that satisfies dominance,

quasi-completeness, separability, anonymity, quasi-flatness preservation and negative re-

sponsiveness to losses.

Before we prove the theorem, we describe the idea behind the proof of the uniqueness

part. Consider an irreducible problem 〈N,A〉. As we know, the fair-bets method ranks

the players in N according to a positive eigenvector, v, of the matrix C−1
A A. That is, v

solves the system of equations

∑
j∈N

aijvj =
∑
j∈N

ajivi i ∈ N.

This means that the matrix A diag(vi)i∈N , whose typical entry is aijvj, is balanced.

If the players in the problem 〈N,A diag(vi)i∈N〉 were equally ranked, it would follow

from negative responsiveness to losses that the players in the original problem are ranked

according to v. Hence, the strategy of the proof is to show that a method that satisfies

all the axioms ranks all players equally in every balanced problem. The proof is in two

steps. First, we prove it for strongly balanced problems and then, using quasi-flatness

preservation, we extend it to all balanced problems. For strongly balanced problems, we

apply Birkhoff’s theorem (Birkhoff (1946), see also Minc (1988)), according to which, every

doubly stochastic matrix can be written as a convex combination of permutation matrices.

This immediately implies that every strongly balanced matrix can be written as a linear

combination of permutation matrices with positive coefficients. Using quasi-completeness

and anonymity, we can prove that the method must rank all players equally in every

problem 〈N, P 〉, where P is a permutation matrix. Finally, quasi-flatness preservation

implies that the same is true for any combination of permutation matrices.

We now turn to the formal proof of the theorem.

Proof : We will first argue that the fair-bets method satisfies all the axioms. Since the

fair-bets method is the natural extension of a method defined on the class of irreducible

problems, it automatically satisfies dominance, quasi-completeness and separability. It

should be clear that it also satisfies anonymity.
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Step 1 The fair-bets method satisfies quasi-flatness preservation.

Let R1 = 〈N, A〉 be a problem such that ºfb
R1

is quasi-flat. Since the fair-bets method

is the natural extension of a method defined on the class of irreducible problems, all the

leagues in R1 are incomparable. Further, for all i ∈ N , quasi-flatness of ºfb
R1

means that

∑

j∈[i]

aij =
∑

j∈[i]

aji,

which implies that all leagues are balanced. By Lemma 1, R1 is balanced.

Now consider R2 = 〈N,B〉 ∈ A and R = 〈N,A + B〉. We have to show that ºfb
R2

is

quasi-flat if and only if ºfb
R is quasi-flat. If ºfb

R2
is quasi-flat, then by the above reasoning

R2 is balanced. Therefore, R, as a sum of two balanced problems, is balanced too. By

Lemma 1, all its leagues are balanced and incomparable. By definition of the fair-bets

method, ºfb
R is quasi-flat. As for the other direction, if ºfb

R is quasi-flat, then by the same

reasoning as in the first paragraph of the proof, R is balanced. Since R1 is also balanced,

we conclude that R2 is balanced as well. By Lemma 1, all its leagues are incomparable

and balanced, implying that ºfb
R2

is quasi-flat.

Step 2 The fair-bets method satisfies negative responsiveness to losses.

Let R = 〈N, A〉 be an irreducible problem, and assume that ºfb
R is flat. This means that∑

j∈N aij =
∑

j∈N aji for all i ∈ N . Let (λi)i∈N À 0 be a vector of positive entries such

that 〈N, AΛ〉 ∈ A, where Λ = diag(λi)i∈N . Then for all i ∈ N

∑
j∈N

(λjaij)
1

λj

=
∑
j∈N

(λiaji)
1

λi

.

This means that (λ−1
i )i∈N is an eigenvector of C−1

AΛAΛ and thus the fair-bets method ranks

the players in 〈N, AΛ〉 according to (λ−1
i )i∈N

We now show that any method that satisfies the six axioms, coincides with the fair-bets

method. By dominance, separability and quasi-completeness, it is enough to show that the

statement holds for all irreducible problems. Let N be a set of players. In what follows we

restrict attention to problems with player set N . Therefore we omit N from the notation,

and we denote a problem by its matrix.
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Step 3 Let º be a method that satisfies anonymity and quasi-completeness. If P is a

permutation matrix with pii = 0 for all i, then ºP is quasi-flat.

Since P is a permutation matrix, the players of each league form a cycle. By anonymity

and quasi-completeness, all players in each cycle are equally ranked. Further, P ’s leagues

are incomparable, and hence, by quasi-completeness, ºP is quasi-flat.

Step 4 If º satisfies anonymity, quasi-completeness, quasi-flatness preservation and neg-

ative responsiveness to losses, then for any strongly balanced and irreducible problem A,

ºA is flat.

Let A be a strongly balanced and irreducible problem. Since A is strongly balanced, by

Birkhoff’s theorem (Birkhoff (1946)), A can be written as

A =
T∑

t=1

ktPt

where for each t, kt is a positive constant and Pt is a permutation matrix. Since A is a

matrix with integer entries, all the kt can be chosen to be rational numbers. Let κ ∈ IN

be such that κkt ∈ IN for t = 1, . . . T . Then, denoting κt = κkt, we have

κA =
T∑

t=1

κtPt.

By Step 3, ºPt is quasi-flat. By weak homogeneity, ºκtPt is quasi-flat for t = 1, . . . , T .

By quasi-flatness preservation, ºκA is also quasi-flat. Since A is irreducible, so is κA and

consequently ºκA is flat. By negative responsiveness to losses, ºA is flat.

Step 5 If º satisfies anonymity, quasi-completeness, quasi-flatness preservation and neg-

ative responsiveness to losses, then for any balanced and irreducible problem A, ºA is

flat.

Let A be an irreducible balanced problem and let b = 2 maxij aij. Consider the problem

2A + bJ , where J is the “unit matrix”, whose off-diagonal entries are all 1 and whose

diagonal entries are 0. By anonymity, ºJ is flat, and by weak homogeneity so is ºb J .

By quasi-flatness preservation, it is enough to show that º2A+bJ is flat. Let B = (bij) be
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the problem defined by

bij =

{
0 if i = j

b− (aij + aji) otherwise.

Note that 2A + bJ = (2A + B) + (bJ − B). The matrix 2A + B is a strongly balanced

problem. Indeed, since both A and B are balanced, so is 2A + B. Further, for all i ∈ N

∑

j 6=i

(2aij + bij) =
∑

j 6=i

2aij +
∑

j 6=i

(b− aij − aji)

=
∑

j 6=i

2aij + (n− 1)b−
∑

j 6=i

2aij

= (n− 1)b,

which implies that 2A + B is strongly balanced. Therefore, by Step 4, º2A+B is

flat. Further bJ − B is a symmetric problem, therefore, by quasi-flatness preservation,

anonymity, and quasi-completeness, ºbJ−B is quasi-flat. Then, by quasi-flatness preser-

vation º(2A+B)+(bJ−B) is quasi-flat. Since 2A + bJ = (2A + B) + (bJ − B) is irreducible,

º2A+bJ is flat.

Step 6 Let º be a method that satisfies anonymity, quasi-completeness, quasi-flatness

preservation, and negative responsiveness to losses. Then, for all irreducible problems A,

ºA =ºfb
A .

Let A be an irreducible problem and let v = (vi)i∈N be a positive, integer-valued, eigen-

vector of C−1
A A. That is, v satisfies

∑
j∈N

aijvj =
∑
j∈N

ajivi i ∈ N.

Then A′ = A diag(vi)i∈N is a balanced and irreducible problem. By Step 5, ºA′ is flat.

Since A = A′(diag(vi)i∈N)−1, by negative responsiveness to losses,

i ºA j ⇔ 1/vi ≤ 1/vj ⇔ vi ≥ vj ⇔ i ºfb
A j,

which proves the required equality.
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Step 6 completes the proof of the theorem. 2

Remark 1 If we replace the axiom of negative responsiveness to losses with a dual one

of positive responsiveness to wins, which is defined in an analogous and obvious way, a

similar proof would give a characterization of the dual fair-bets method. This shows also

that there is no method that satisfies both negative responsiveness to losses and positive

responsiveness to wins together with the rest of our axioms, except, of course, within the

class of two-player problems where the fair-bets and the dual fair bets methods coincide.

Remark 2 The axiom of dominance is used only to determine the relative ranking between

any two players who belong to two different and comparable leagues. We could dispense

with this axiom if we restricted our attention to the subclass of problems that consist

of only one league or of several incomparable leagues. The same proof of Theorem 1

shows that the fair-bets method is the only method for this smaller class of problems

that satisfies quasi-completeness, separability, anonymity, quasi-flatness preservation and

negative responsiveness to losses.

5 Independence of the axioms

In this section we briefly consider the question of independence of the axioms used in this

paper. We list below, along with each axiom, an example of a method that satisfies all the

axioms mentioned in Theorem 1 except for the one under consideration. In each case we

indicate in boldface which axiom fails.

Dominance The method º such that for all R = 〈N, A〉, i, j ∈ N ,

• if [i] 7→ [j] then j ºR i

• otherwise i ºR j if and only if i ºfb
R j.
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Quasi-completeness The method that coincides with the fair-bets except for problems

with exactly two incomparable and strongly balanced leagues. In this case, the

method ranks all players equally.

Separability Consider the method that ranks the players in a problem in the following

way. If the problem has only one league, then players are ranked according to the

fair-bets method. Otherwise, the players are ranked according to the dual fair-bets.

To see that this method satisfies negative responsiveness to losses, note that this

axiom applies only to irreducible problems and in this class the method coincides

with the fair-bets, which satisfies the axiom. To see that this method satisfies quasi-

flatness preservation, note that it yields a quasi-flat ranking if and only if the problem

is balanced.

Anonymity Fix an arbitrary but complete (strict) order Ẫ of the players, and consider

the natural extension of the method (defined on the class of irreducible problems)

that ranks the players of a league according to Ẫ.

Negative responsiveness to losses The natural extension of the method that ranks all

players equally in all irreducible problems. Another example is the dual fair-bets

method.

Quasi-flatness Preservation The natural extension of the method, defined on the class

of irreducible problems, that ranks the players according to the reciprocal of their

total number of losses. To see that this method does not satisfy quasi-flatness preser-

vation, consider the problems defined by the following matrices:

A =




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0




, B =




0 0 0 2

0 0 3 0

0 3 0 0

2 0 0 0




, A + B =




0 1 0 2

1 0 3 0

0 3 0 1

2 0 1 0




.

It is clear that the method results in quasi-flat rankings for both A and B but not

for A + B.
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Appendix

Proof of Lemma 1: The “if” part is simple. If all leagues are incomparable, then for all

i ∈ N and for all j /∈ [i], aij = aji = 0. If, in addition, the league [i] is balanced, then

∑
j∈N

aij =
∑

j∈[i]

aij =
∑

j∈[i]

aji =
∑
j∈N

aji ∀i ∈ N.

For the “only if” part, assume R is balanced. Since the “higher than” relation between

leagues is irreflexive and transitive, we can find a league, say [k], that is maximal with

respect to that relation. That is, no player outside [k] beat a player in [k]. Formally,

aji = 0 for all i ∈ [k] and for all j /∈ [k]. This means that

∑
j∈N

aji =
∑

j∈[k]

aji ∀i ∈ [k]. (2)

We will show that [k] is also a minimal league. That is, that aij = 0 for all i ∈ [k] and for

all j /∈ [k]. This implies that

∑

j∈[k]

aij =
∑
j∈N

aij ∀i ∈ [k], (3)

which together with equation (2) and the fact that R is balanced means that [k] is balanced.

In order to show that [k] is minimal, note that since R is balanced and [k] is maximal,

∑
j∈N

aij =
∑
j∈N

aji =
∑

j∈[k]

aji ∀i ∈ [k].

Adding over all i ∈ [k], we get

∑

i∈[k]

∑
j∈N

aij =
∑

i∈[k]

∑

j∈[k]

aji

or, splitting the sum on the left-hand side,

∑

i∈[k]

∑

j /∈[k]

aij +
∑

i∈[k]

∑

j∈[k]

aij =
∑

i∈[k]

∑

j∈[k]

aji.
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Since
∑

i∈[k]

∑
j∈[k] aij =

∑
i∈[k]

∑
j∈[k] aji, we have that

∑
i∈[k]

∑
j /∈[k] aij = 0, which implies

that aij = 0 for all i ∈ [k] and j /∈ [k]. In other words, [k] is a minimal league. Further,

since [k] is an arbitrary maximal league, we conclude that all maximal leagues are also

minimal, implying that all leagues are incomparable. 2
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