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Abstract

We characterize the Nash bargaining solution replacing the axiom of Independence of Ir-
relevant Alternatives with three independent axioms: Independence of Non-Individually Ra-
tional Alternatives, Twisting, and Disagreement Point Convexity. We give a non-cooperative
bargaining interpretation to this last axiom. JEL Classification, C72, C78.

1 Introduction

Since Nash (1950), a bargaining problem is usually defined as a pair (S, d) where S is a compact,

convex subset of IR2 containing both d and a point that strictly dominates d. Points in S are

interpreted as feasible utility agreements and d represents the status-quo outcome. A bargaining

solution is a rule that assigns a feasible agreement to each bargaining problem. Nash (1950)

proposed four independent properties and showed that they are simultaneously satisfied only by

the Nash bargaining solution.

While three of Nash’s axioms are quite uncontroversial, the fourth one (known as indepen-

dence of irrelevant alternatives (IIA)) raised some criticisms, which lead to two different lines of

research. Some authors looked for characterizations of alternative solutions which do not use the

controversial axiom (see for instance, Kalai and Smorodinsky (1975), and Perles and Maschler

(1981)) while other papers provided alternative characterizations of the Nash solution without

appealing to the IIA axiom. Examples of this second line of research are Peters (1986b), Chun

and Thomson (1990), Peters and van Damme (1991), Mariotti (1999), Mariotti (2000), and Lens-

berg (1988). The first three papers replace IIA by several axioms in conjunction with some type
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of continuity. The next two papers replace IIA and other axioms by one axiom. Lastly, Lens-

berg (1988) replaces IIA with consistency, and consequently a domain with a variable number of

agents is needed.

In this paper, we provide an alternative characterization of the Nash bargaining solution in

which the axiom of independence of irrelevant alternatives is replaced by three different axioms.

While all three of these axioms are known in the literature, they have never been used in combina-

tion. One of the axioms is independence of non-individually rational alternatives, which requires

a solution to be insensitive to changes in the feasible set that involve only non-individually ra-

tional outcomes. This axiom neither implies nor is implied by IIA, but is weaker than IIA and

Individual Rationality together.1 The second axiom is twisting, which is a weak monotonicity re-

quirement that is implied by IIA. The third axiom is disagreement point convexity which requires

that the solution be insensitive to movements of the disagreement point towards the proposed

compromise. This last axiom does not imply nor is implied by IIA. Further, the three axioms

together do not imply IIA.

All of the axioms used in this paper have a straightforward interpretation except, perhaps, for

disagreement point convexity. This axiom, however, has an interpretation that is closely related

to non-cooperative models of bargaining. Assume that the solution recommends f(S, d) when

the bargaining problem is (S, d). The players may postpone the resolution of the bargaining for t

periods getting f(S, d) only after t periods of disagreement. From today’s point of view, knowing

that one has the alternative of reaching agreement t periods later is as if the new disagreement

point was f(S, d) paid t periods later. Disagreement point convexity requires that the solution

be insensitive to this kind of manipulation.

Our result, though not its proof, is closely related to Peters and van Damme (1991). The main

difference is that we replace their disagreement point continuity axiom by the twisting axiom. In

this way, we get rid of a mainly technical axiom and replace it by a more intuitive and reasonable

one. Needless to say, disagreement point continuity and twisting, are not equivalent. Further,

neither of them implies the other.

The paper is organized as follows: In Section 2, we present the preliminary definitions and

the axioms used in the characterization. Section 3 gives the main result. Section 4 shows that

the axioms are independent. Finally, Section 5 discusses the related literature.

1A solution is individually rational if it assigns each player a utility level that is not lower than its disagreement
level. See next section.
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2 Basic definitions

In this section, we present some basic definitions. Since most of them are standard, we do not

provide their interpretation.

A bargaining problem is a pair (S, d) where S ⊆ IR2 is a compact, convex set, d ∈ S and there

is s ∈ S with s � d.2 We denote by B the set of all bargaining problems. A bargaining solution

is a set-valued function f : B → 2IR
2 \ ∅ such that for every bargaining problem B = (S, d),

f(B) ⊆ S. We allow for set-valued solutions to highlight the role of some of the axioms in the

present characterization. Let (S, d) be a bargaining problem. We say that s ∈ S is individually

rational if s ≥ d. We say that s ∈ S is weakly efficient if there is no s′ ∈ S such that s′ � s and

that s is efficient if there is no s′ ∈ S, s′ 	= s, such that s′ ≥ s. We denote by IR(S, d) the set of

individually rational points in (S, d).

The Nash bargaining solution is the solution n : B → 2IR
2 \∅ that for each bargaining problem

(S, d) selects the singleton {(s∗1, s∗2)} ⊆ S that contains the only point in IR(S, d) which satisfies

(s∗1 − d1)(s∗2 − d2) ≥ (s1 − d1)(s2 − d2), for all (s1, s2) ∈ IR(S, d).

We now turn to properties of bargaining solutions.

A bargaining problem (S, d) is symmetric if

• d1 = d2 and

• (s1, s2) ∈ S implies (s2, s1) ∈ S.

We say that (S′, d′) is obtained from the bargaining problem (S, d) by the transformations

si → αisi + βi, for i = 1, 2, if d′i = αidi + βi, for i = 1, 2 and

S′ = {(α1s1 + β1, α2s2 + β2) ∈ IR2 : (s1, s2) ∈ S}.

The following properties are standard:

Symmetry: A bargaining solution f satisfies symmetry if for all symmetric bargaining problems

(S, d),

(s1, s2) ∈ f(S, d)⇔ (s2, s1) ∈ f(S, d).

Weak Pareto optimality: A bargaining solution f satisfies weak Pareto optimality if for all

bargaining problems (S, d), f(S, d) is a subset of the weakly efficient points in S. It satisfies

Pareto optimality if for all bargaining problems (S, d), f(S, d) is a subset of the efficient

points in S.

2We adopt the following conventions for vector inequalities: x � y ↔ xi > yi for all i, and x ≥ y ↔ xi ≥ yi for
all i.
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Invariance: A bargaining solution satisfies invariance if whenever (S′, d′) is obtained from the

bargaining problem (S, d) by means of the transformations si → αisi + βi, for i = 1, 2,

where αi > 0 and βi ∈ IR, we have that fi(S′, d′) = αifi(S, d) + βi, for i = 1, 2.

IIA: A bargaining solution f satisfies independence of irrelevant alternatives if f(S′, d) =

f(S, d) ∩ S′ whenever S′ ⊆ S and f(S, d) ∩ S′ 	= ∅.

Since we do not require solutions to be single-valued, the above properties are not enough

to characterize the Nash bargaining solution. In order to establish what is essentially Nash’s

characterization we need the following property.

Single-valuedness in symmetric problems: A bargaining solution f satisfies single-valuedness

in symmetric problems if for every symmetric problem B ∈ B, f(B) is a singleton.

As stated in the introduction, we shall replace the axiom of IIA by the following three inde-

pendent properties:

Independence of non-individually rational alternatives: A bargaining solution satisfies

independence with respect to non-individually rational alternatives if for every two prob-

lems (S, d) and (S′, d) such that IR(S, d) = IR(S′, d) we have f(S, d) = f(S′, d).

Independence of non-individually rational alternatives requires that the solution be insensitive to

changes in the feasible set that do not involve individually rational outcomes. It clearly implies

that the solution always chooses a subset of the individually rational agreements. It can be

checked that if a solution always chooses a subset of the individually rational agreements and

also satisfies IIA then the solution satisfies independence of non-individually rational alternatives.

This axiom was first discussed in Peters (1986a).

The following axiom says the following. Assume that the point ŝ = (ŝ1, ŝ2) is chosen by the

solution when the problem is (S, d). Assume further that the feasible set is modified so that all

the subtracted points are preferred by one player to ŝ while ŝ is preferred by the same player

to each of the added points. Then the axiom requires that ŝ be weakly preferred by that same

player to at least one point selected by the solution in the new problem (S′, d).

Twisting: A bargaining solution f satisfies twisting if the following holds: Let (S, d) be a bar-

gaining problem and let (ŝ1, ŝ2) ∈ f(S, d). Let (S′, d) be another bargaining problem such

that for some agent i = 1, 2

S \ S′ ⊆ {(s1, s2) : si > ŝi}
S′ \ S ⊆ {(s1, s2) : si < ŝi}.

4



Then, there is (s′1, s′2) ∈ f(S′, d) such that s′i ≤ ŝi.

Twisting is a mild monotonicity condition, which was introduced (in its single-valued version) by

Thomson and Myerson (1980) who also showed that it is implied by IIA. Twisting is satisfied by

most solutions discussed in the literature.

The next axiom was used in Peters and van Damme (1991). Thomson (1994), who calls it star-

shaped inverse succinctly summarizes this axiom as saying “that the move of the disagreement

point in the direction of the desired compromise does not call for a revision of this compromise”.

Disagreement point convexity: A bargaining solution f satisfies disagreement point convexity

if for every bargaining problem B = (S, d), for all s ∈ f(S, d) and for every λ ∈ (0, 1) we
have s ∈ f(S, (1− λ)d+ λs).

This axiom has a non-cooperative flavor and it is related to one of the properties of the Nash

equilibrium concept for extensive form games, namely the property that one can “fold back the

tree”. Consider an extensive form game and fix a Nash equilibrium σ in it. For every node

n in the tree, σ determines an outcome, z(n, σ), which is the outcome that would result if σ

was played in the subgame that starts at node n. In particular, σ determines a Nash equilibrium

outcome z(n0, σ), where n0 denotes the root of the tree. Now, z(n0, σ) remains a Nash equilibrium

outcome if we replace any given node n by the outcome z(n, σ). This “tree folding property”

is also satisfied by the Subgame Perfect equilibrium concept. However, we want to stress that

this property is so basic that it is even satisfied by the Nash equilibrium concept. The axiom

of disagreement point convexity tries to capture the tree folding property when applied to the

subgame perfect equilibrium of a specific class of bargaining games, which we turn to describe.

Many non-cooperative models of bargaining are represented by an infinite-horizon station-

ary extensive form game with common discount factor δ, Rubinstein’s (1982) alternating offers

model being the most prominent example. Further, the solution concept used is subgame perfect

equilibrium. All these games have the following properties:

1. The disagreement outcome corresponds to the infinite history in which the current proposal

is rejected at every period.

2. There is an agreement a∗ such that the unique subgame perfect equilibrium of the game

dictates that a∗ is immediately agreed upon. Further, a∗ is immediately agreed upon at

every subgame that is equivalent to the original game.

To see an application of the tree folding property to one such game, consider a stationary extensive

form bargaining game Γ with the properties 1 and 2 above3 and fix a period t. Assume that at

3The reader may find it convenient to consider Rubinstein’s (1982) game.
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period t the proposer is the same one as in the first period so that all subgames that start at

the beginning of period t are identical to Γ. Build a new game by replacing each subgame of

Γ that starts at the beginning of period t by the subgame perfect equilibrium outcome of that

subgame. (Note that an outcome will typically have the format of “disagreement until period t′

and agreement a at t′”. 4). By property 2 above, this outcome is “disagreement until period t,

and agreement a∗ at t”. The resulting game, Γ(t), is a finite horizon extensive form game in which

a history of constant rejections leads to a∗ at period t. That is, in this new game disagreement

leads to the subgame perfect equilibrium outcome a∗, but delayed by t periods during which there

is disagreement. Still, the subgame perfect equilibrium outcome of this modified game Γ(t) is an

immediate agreement on a∗, which is what the tree folding property says.

Going back to the cooperative bargaining problem, let d be the present value of the utility

stream of disagreement forever, and let s be the vector of utilities that correspond to the equilib-

rium outcome a∗. Then, the shifted disagreement point (1− λ)d+ λs in the disagreement point

convexity axiom corresponds precisely to the disagreement outcome of the amended game Γ(t),

λ being δt. To see this, note that the present value of a stream of t periods of disagreement and

then agreement on a∗ at t is (1− δt)di + δtsi for player i, for i = 1, 2.5 Using this interpretation,

disagreement point convexity simply says that if we amend the bargaining problem so that the

consequence of no agreement is that players disagree for t periods, and receive f(S, d) afterwards

(yielding a payoff of (1− δt)d+ δtf(S, d)), then they should agree on f(S, d) to be paid from the

outset. Note that for the disagreement point to move along the segment that connects d and s

when we replace the subgame with its equilibrium outcome, it is essential to assume a common

discount factor.

Disagreement point convexity seems to be an appropriate requirement, especially if one has

in mind a stationary bargaining game. Dagan, Volij, and Winter (1999) exploit this axiom to

give a characterization of the time-preference Nash solution in a setting with physical outcomes.6

3 The Main Result

We can now present the main result.

4We have in mind bargaining over a per-period payoff rather than over a stock. Both approaches are equivalent
since every constant flow is equivalent to a stock and vice versa.

5If one considers a model without impatience but where after each rejected offer there is a probability 1− δ of
negotiations breakdown, resulting in d, then (1 − δt)d + δts is the expected utility pair associated with a history
of agreement on a∗ after t rejections.

6See Binmore, Rubinstein, and Wolinsky (1986) for the difference between what they call the standard and the
time-preference Nash solutions.
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Theorem 1 A bargaining solution satisfies weak Pareto optimality, symmetry, invariance, single-

valuedness in symmetric problems, independence with respect to non-individually rational alloca-

tions, twisting, and disagreement point convexity if and only if it is the Nash bargaining solution.

Proof : It is known that the Nash solution satisfies weak Pareto optimality, symmetry, invariance

and single-valuedness in symmetric problems (see Nash (1950)). By its definition, the Nash

solution also satisfies independence of non-individually rational alternatives. Also, the Nash

solution satisfies twisting, since twisting is weaker than IIA (see Thomson and Myerson (1980) or

the appendix for the set valued version used here), which is in turn satisfied by the Nash solution.

Finally, Peters and van Damme (1991) showed that it also satisfies disagreement point convexity.

This shows that the Nash solution satisfies all the axioms in the theorem. We now show that no

other solution satisfies all of them together. Suppose that a solution f satisfies all the axioms.

First step. Consider first a triangular problem (S, d) where S = co{(d1, d2), (b1, d2), (d1, b2)}
with bi > di for i = 1, 2, and for any set A ⊆ IR2, coA is the convex hull of A. Since there are

affine transformations by means of which (S, d) is obtained from (co{(0, 0), (1, 0), (0, 1)}, (0, 0)) ≡
(I, (0, 0)) and since both f and n satisfy invariance, we have that f(S, d) = n(S, d) if and only if

f(I, (0, 0)) = n(I, (0, 0)). But by single-valuedness in symmetric problems, weak Pareto optimal-

ity and symmetry of f we know that f(I, (0, 0)) = {(1/2, 1/2)} = n(I, (0, 0)).

Second step. Consider a general bargaining problem (S, d) and let ŝ ∈ f(S, d). Since both n

and f satisfy independence of non-individually rational alternatives, we can assume without loss

of generality that IR(S, d) = S.

Case 1: ŝ � d: In this case, by invariance we can assume without loss of generality that

d = (0, 0) and ŝ = (1/2, 1/2). It is enough to show that ŝ ∈ n(S, d). Assume by contradic-

tion that ŝ /∈ n(S, d) and consider the triangular problem (co{(0, 0), (1, 0), (0, 1)}, (0, 0)) =
(I, (0, 0)). We know that n(I, (0, 0)) = {ŝ}. Since n satisfies IIA, we have that S 	⊆ I. That

is there exists s∗ = (s∗1, s∗2) ∈ S \ I. By weak Pareto optimality of f , ŝ is a weakly efficient

point of S. Therefore it cannot be the case that s∗ � ŝ. Also, we cannot have s∗ ≤ ŝ be-

cause otherwise s∗ would be in I. Therefore, either s∗1 > ŝ1 or s∗2 > ŝ2. Assume without loss

of generality that s∗1 > ŝ1 and s∗2 < ŝ2 (if s∗1 > ŝ1 and s∗2 = ŝ2, then there must be another

point s∗∗ = (s∗∗1 , s∗∗2 ) ∈ S \ I, close enough to s∗ with s∗∗1 > ŝ1 and s∗∗2 < ŝ2). Also, since

any convex combination of s∗ and ŝ is in S \ I, we can choose s∗ � d. We now build two

bargaining problems, both of which have (s∗2, s∗2) as disagreement point. The first problem

is (S′, (s∗2, s∗2)), where S′ = IR(S, (s∗2, s∗2)). The second problem is the individually rational

region of the triangle whose hypothenuse is the line connecting s∗ and ŝ (see Figure 1) .

Formally, the problem is (∆, (s∗2, s∗2)) where ∆ = co{(s∗2, s∗2), (s∗1, s∗2), (s∗2, s∗2+ ŝ2−s∗2
s∗1−ŝ1

(s∗1−s∗2)}.
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✻

✲

ŝ

s∗

(s∗2, s∗2)

∆

S

Figure 1: The two auxiliary problems.

By disagreement point convexity and independence of non-individually rational alternatives

of f , we have

ŝ = (1/2, 1/2) ∈ f(S′, (s∗2, s
∗
2)). (1)

Further, we claim that

S′ \∆ ⊆ {(s1, s2) ∈ IR2 : s1 > ŝ1} and ∆ \ S′ ⊆ {(s1, s2) ∈ IR2 : s1 < ŝ1}.

Indeed, if there was a point (s1, s2) ∈ S′ \∆ with s1 ≤ ŝ1 = 1/2, then we would have that

(s1, s2) is above the straight line that connects ŝ and s∗. Therefore, the line segment that

connects (s1, s2) with s∗ is also above this line. But then, there would be a point in this

segment which belongs to S and which dominates ŝ, which is impossible given that ŝ is a

weakly efficient point of S. Similarly, if there was a point (s1, s2) ∈ ∆ \ S′ with s1 ≥ ŝ1,

then (s1, s2) would be on or below the straight line that connects ŝ and s∗. Therefore, it

would be a convex combination of ŝ, s∗ and (s∗2, s∗2). Since the three points are in S′, so

would (s1, s2), which contradicts the fact that (s1, s2) /∈ S′.
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Therefore, by twisting of f we have

∃(s1, s2) ∈ f(∆, (s∗2, s
∗
2))

such that

s1 ≤ ŝ1 = 1/2. (2)

On the other hand, since (∆, (s∗2, s∗2)) is a triangular problem, by the first step in the proof

f(∆, (s∗2, s∗2)) = n(∆, (s∗2, s∗2)) which implies that

f(∆, (s∗2, s
∗
2)) = {(s1, s2)} = n(∆, (s∗2, s

∗
2)).

By construction of ∆, the Nash solution awards player 1 in (∆, (s∗2, s∗2)) more than 1/2,

that is

s1 > 1/2

which contradicts (2).

Case 2: ŝ 	� d: Again, without loss of generality assume d = (0, 0). In this case either ŝ = (b1, 0)

or ŝ = (0, b2). Assume without loss of generality that ŝ = (0, b2) with b2 > 0. Pick any

λ ∈ (0, 1) and let S(λ) = IR(S, λŝ). Since λŝ is an interior point of S in the space IR2
+, we

can find a triangular set ∆ = co{λŝ, ŝ, (c1, λŝ2)} that is contained in S(λ). Consider now

the following two bargaining problems: (S(λ), λŝ) and (∆, λŝ).

✻

✲

∆

S

ŝ

λŝ

d = (0, 0)

Figure 2: Case 2.
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By disagreement point convexity and independence of non-individually rational alternatives

f(S(λ), λŝ) = ŝ = (0, b2). Since (∆, λŝ) is a triangular problem, by the first step in the

proof we have

f(∆, λŝ) = n(∆, λŝ) = (s′1, s
′
2)� (0, 0). (3)

By construction, we have

S(λ) \∆ ⊆ {(s1, s2) : s1 > ŝ1} and ∆ \ S(λ) ⊆ {(s1, s2) : s1 < ŝ1}.

Therefore, by twisting we must have s′1 ≤ ŝ1 = 0 which contradicts equation 3.

✷

Remark. It should be clear that the statement of the theorem still holds if we restrict

attention to the family of bargaining problems (S, d) that are comprehensive with respect to d.

Namely, those bargaining problems (S, d) such that if s ≥ s′ ≥ d and s ∈ S, then s′ ∈ S.

4 Independence of the axioms

The following examples show that the seven axioms used in the characterization are independent.

Beside each axiom there is a solution that fails to satisfy that axiom but which satisfies the other

six.

Weak Pareto optimality: The disagreement point solution: f : (S, d)→ {d}.

Symmetry: Any asymmetric Nash solution.

Invariance: The Lexicographic Egalitarian solution (see, Chun and Peters (1988)).

Single-valuedness in symmetric problems: The set of weakly efficient and individually ra-

tional points.

Independence of non-individually rational alternatives: The Kalai-Rosenthal solution:

it selects the maximal point of S in the segment connecting d and b(S, d), where bi(S, d) ≡
max{xi : x ∈ S} (see Kalai and Rosenthal (1978)).

Twisting: If B can be obtained by means of a pair of affine transformations from a bargaining

problem B′ = (S′, d′), where d = (0, 0) and IR(B′) = co{(0, 0), (1, 0), (1/3, 2/3)}, then
f(B) is the point that is obtained by means of these transformations from (1/3, 2/3).

Otherwise, f coincides with the Nash bargaining solution.
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Disagreement point convexity: The Kalai-Smorodinsky bargaining solution: it selects the

maximal point of S in the segment connecting d and a(S, d), where ai(S, d) ≡ max{xi : x ∈
IR(S, d)} (see, Kalai and Smorodinsky (1975)).

The reader may have noticed that we could have restricted solutions to be single valued instead

of imposing single-valuedness in symmetric problems as an axiom. We chose this presentation

to highlight the role of single-valuedness. There are many bargaining solutions that satisfy all

the axioms except for single-valuedness. As mentioned above, the set of efficient and individually

rational outcomes is one example but there are many more. For instance, if fα is the asymmetric

Nash solution that maximizes the asymmetric Nash product sα
1 s1−α

2 , for α ∈ (0, 1), then the

solution that selects for every (S, d), the set fα(S, d) ∪ f1−α(S, d) also satisfies all the axioms

except for single-valuedness. Further, it can be easily checked that if {fγ}γ∈Γ is a family of

bargaining solutions that satisfy weak Pareto optimality, symmetry, invariance, independence of

non-individually rational outcomes, twisting and disagreement point convexity, then the solution
⋃

γ∈Γ fγ defined by (
⋃

γ∈Γ fγ)(S, d) =
⋃

γ∈Γ fγ(S, d) satisfies these axioms as well. Moreover,

the set of efficient and individually rational points is the maximal (in the sense of set inclusion)

bargaining solution that satisfies the above axioms. It is single-valuedness in symmetric problems

what allows us to select the Nash bargaining solution out of the large family of solutions that

satisfy the other axioms, including symmetry.

We also should note that the axioms of independence of non-individually rational alterna-

tives, twisting and disagreement point convexity that we use to replace IIA, do not imply the

independence of irrelevant alternatives axiom: the solution that selects the disagreement point if

the feasible set is a line segment and the Nash outcome otherwise, satisfies all the three axioms

(in fact, satisfies all the axioms except for weak Pareto optimality) but does not satisfy IIA.

5 Related Literature

This paper provides a characterization of the Nash bargaining solution on Nash’s original domain

of bargaining problems, and in which the independence axiom is replaced by three other axioms.

Our result is closely related to Peters and van Damme (1991) and our contribution can be seen

as eliminating of continuity axioms from the characterization. Continuity has been replaced by

twisting, a mild axiom that, to our knowledge, is satisfied by most solution concepts discussed

in the literature (the Perles-Maschler solution is one exception). Other characterizations of the

Nash solution that use similar axioms, but still need continuity, are Peters (1986b) and Chun and

Thomson (1990). Mariotti (1999) also provides a characterization of the Nash solution without

appealing to IIA, but, as opposed to the other mentioned papers, he reduces the number of
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axioms. In fact, there are only two characterizing axioms: invariance and Suppes-Sen proofness.

The same can be said about Mariotti (2000) who replaces IIA and symmetry by strong individual

rationality and the axiom of Maximal Symmetry.

Chun and Thomson (1990) characterize the Nash bargaining solution using, along with Pareto

optimality, symmetry, scale-invariance, independence of non-individually rational outcomes, and

a continuity axiom. The two axioms, which capture features of bargaining with uncertain dis-

agreement points can be stated as follows:7

R.D.LIN.: A single-valued bargaining solution f satisfies restricted disagreement point lin-

earity if for every two problems (S, d) and (S, d′), and for all α ∈ [0, 1], if αf(S, d)+(1−α)f(S, d′)

is efficient and S is smooth both at f(S, d) and f(S, d′), then f(S, αd+ (1− α)d′) = αf(S, d) +

(1− α)f(S, d′).

D.Q-CAV.: A single-valued bargaining solution f satisfies disagreement point quasi-concavity

if for every two problems (S, d) and (S, d′), and for all α ∈ [0, 1], fi(S, αd + (1 − α)d′) ≥
min{fi(S, d), fi(S, d′)} for i = 1, 2.

We now investigate the relation between these two axioms and disagreement point convexity.

Claim 1 If a single-valued bargaining solution, f , satisfies Pareto optimality, independence of

non-individually rational alternatives and D.Q-CAV., then it also satisfies disagreement point

convexity.

Proof : Let (S, d) be a bargaining problem and let s = f(S, d). Let λ ∈ (0, 1) and assume that
f(S, (1−λ)d+λs) 	= s. Since f satisfies Pareto optimality, fi(S, d) > fi(S, (1−λ)d+λs) for some

i = 1, 2, which, without loss of generality, can be taken to be agent 1. Therefore, we can find an

α ∈ (0, 1) close enough to 1 such that the point d′ = (1−α)d+αs satisfies d′1 > f1(S, (1−λ)d+λs).

Since f satisfies individual rationality, f1(S, d′) > f1(S, (1− λ)d+ λs). This inequality, together

with f1(S, d) > f1(S, (1 − λ)d + λs) imply min{f1(S, d), f1(S, d′)} > f1(S, (1 − λ)d + λs). By

the way d′ was chosen, we know that (1 − λ)d + λs is a convex combination of d and d′ and

consequently the above inequality implies that f does not satisfy D.Q-CAV. ✷

As a corollary, we have that we could replace weak Pareto optimality and disagreement point

convexity in our characterization by Pareto optimality and D.Q-CAV.

7Chun and Thomson (1990) define bargaining solutions as single-valued functions that select points from the
set of feasible utilities. To facilitate comparison in what remains of this section, we use the single-valued versions
of the axioms, including disagreement point convexity.
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The relationship between disagreement point convexity and R.D.LIN. is not so clear, at least

within the domain of problems considered in this paper. However, Pareto optimality, indepen-

dence of non-individually rational alternatives and R.D.LIN. imply disagreement point convexity

within the domain of bargaining problems with smooth Pareto frontiers provided we enlarge the

definition of bargaining problems to include those pairs (S, d) with efficient disagreement points.8

To see this, consider a bargaining problem (S, d) in this domain and let f be a bargaining

solution that satisfies Pareto optimality, independence of non-individually rational alternatives

and R.D.LIN. By Pareto optimality, we have that f(S, d) is efficient. By independence of non-

individually rational alternatives, we have that f(S, f(S, d)) = f(S, d). Since the efficient frontier

is smooth, we can apply R.D.LIN. to conclude that f(S, (1 − λ)d + λf(S, d)) = f(S, d) for all

λ ∈ (0, 1). This means that f satisfies disagreement point convexity.

The Nash solution is not defined for the above domain. However, one can extend it, as Peters

and van Damme (1991) do, so as to select the only efficient and individually rational point when

the disagreement point is weakly efficient. In this case, our characterization goes through and

the axioms of weak Pareto optimality and disagreement point convexity can, as a corollary of the

observation of the previous paragraph, be replaced by Pareto optimality and R.D.LIN.

Our characterization is on Nash’s original domain. In particular, we restrict attention to two-

person bargaining problems. It is not clear whether the same axioms are sufficient to fully char-

acterize the Nash bargaining solution for general n-person bargaining problems. The Nash bar-

gaining solution does satisfy all the axioms. However, our proof makes use of the 2-dimensionality

of the problem. In particular, when there are more than 3 players, it is not clear how to build

the auxiliary set ∆ with the critical properties used in step 2 of our proof.

Appendix

In this Appendix we show that the set valued version of the independence of irrelevant alternatives

axiom that we use implies twisting. Formally:

Claim 2 If a bargaining solution satisfies independence of irrelevant alternatives, then it also

satisfies twisting.

8Peters and van Damme (1991) consider a domain of problems that contains pairs (S, d) where d is an efficient
point of S.
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Proof : Let (S, d) be a bargaining problem and let ŝ ∈ f(S, d). Let (S′, d) be another bargaining

problem such that for some agent i = 1, 2

S \ S′ ⊆ {(s1, s2) : si > ŝi} (4)

S′ \ S ⊆ {(s1, s2) : si < ŝi}. (5)

We need to show that there is (s′1, s′2) ∈ f(S′, d) such that s′i ≤ ŝi. Assume now by contradiction

that

f(S′, d) ⊆ {(s1, s2) : si > ŝi} (6)

and let Ŝ = S ∩ S′. Since ŝ ∈ f(S, d) ∩ Ŝ, we have by IIA that

ŝ ∈ f(Ŝ, d). (7)

Further, f(S′, d) ∩ S 	= ∅, for if f(S′, d) ⊆ S′ \ S, then by (5), f(S′, d) ⊆ {(s1, s2) : si < ŝi}
which was assumed in (6) not to be true. Therefore, ∅ 	= f(S′, d)∩ S ⊆ S′ ∩ S = Ŝ. This implies

that f(S′, d) ∩ Ŝ 	= ∅ and Ŝ ⊆ S′. Then, by IIA f(Ŝ, d) = f(S′, d) ∩ Ŝ. But then, since by (7),

ŝ ∈ f(Ŝ, d), we have that ŝ ∈ f(S′, d), which by (6) implies that ŝi > ŝi, which is absurd. ✷
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