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Introduction

Since Vickrey (1961)’s seminal paper, the literature on auctions has grown very rapidly. Most

of this literature, though, deals with the case of risk neutral buyers (see, for example, Riley

and Samuelson (1981), Myerson (1981) and Milgrom and Weber (1982) to name only a few very

influential papers). Notable exceptions are Matthews (1983), Maskin and Riley (1984), Moore

(1984), and Matthews (1987), among others, who take risk aversion into account. If results

about auctions with risk averse buyers are scarce, the analysis of auctions with non-expected

utility maximizers is almost nonexistent. Salo and Weber (1995) and Lo (1998) are among the

few papers that take auction theory outside the expected utility paradigm.

The difficulty in the analysis of risk aversion in auctions stems from the nonlinearity of

preferences in money. This may sound tautological because under the expected utility hypothesis,

risk aversion is equivalent to the concavity of the von Neumann-Morgenstern utility function.

But if one is willing to drop the assumption of expected utility maximization, there is no reason

to identify risk aversion with decreasing marginal utility of money. Yaari (1987) proposed a

theory of choice under risk which allows for the co-existence of both risk aversion and linearity of

preferences in payments. Although the linearity of preferences in money is not the most appealing

assumption, it can make the analysis of auctions with risk averse buyers as simple as in the case

of risk neutral buyers. Also, unlike other non-expected utility theories, Yaari’s dual theory of

choice under risk is not a generalization of the expected utility theory. This means that the

auction theory developed from it is no weaker than the standard one and thus one can expect

very different and sometimes contradictory predictions from them.

One of the most celebrated results in the theory of auctions is the revenue equivalence theorem.

It states, roughly, that in the single item, private i.i.d. values framework, there is a large family of

auction mechanisms (which contains the standard auctions) that yield the same expected revenue.

The other side of the revenue equivalence theorem is the fact that all bidders are indifferent among

the auctions in that family. While it is well known that revenue equivalence breaks down as soon

as risk aversion is allowed, Matthews (1987) shows, that when buyers share the same constant

absolute risk aversion von Neumann-Morgenstern utility function, they are indifferent between

the first price and second price auctions. The main result of this paper is that in the private i.i.d.

values framework, when buyers’ risk preferences follow the dual theory axioms, there is a large

family of auctions (which contains the standard ones), among which buyers are indifferent. That

is, although there is no revenue equivalence when buyers’s preferences exhibit risk aversion, it is

still true that they are indifferent between participating in any auction in the above family.

The paper also shows the effect of changes in the degree of risk aversion on the revenue

maximizing reserve price of the high bid auction. It turns out, as in the case of expected utility

preferences, that an increase in buyers’ degree of risk aversion results in a decrease in the seller’s

optimal reserve price.
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Preferences that satisfy the expected utility axioms differ from those that satisfy the dual the-

ory axioms. Nevertheless, we find that in the first price auction the equilibrium bidding function

when buyers’ von Neumann-Morgenstern utility function is given by u(x) = x1/m, for m > 1, is

identical to the equilibrium bidding function when buyers’ Yaari “probability-evaluation” func-

tion is the inverse of u. This result does not generalize to other utility functions and can be

regarded as purely coincidental.

Lastly, we calculate the linear equilibrium of the sealed-bid double auction analyzed in Chat-

terjee and Samuelson (1983), when buyer and seller behave according to the dual theory and have

probability-evaluation functions given by simple polynomials. In this case, as in the case of risk

neutral buyers, the equilibria are ex post inefficient, since it is not true that there is trade if and

only if the value for the buyer is at least as large as the value for the seller. It turns out, however,

that the inefficiency vanishes as the degree of the traders’ risk aversion becomes arbitrarily large.

Also, it is shown that an increase in the buyer’s degree of risk aversion uniformly increases the

equilibrium terms of trade. Similarly, an increase in the seller’s degree of risk aversion uniformly

decreases the equilibrium terms of trade.

The paper is organized as follows. Section 1 presents a short review of Yaari’s theory of

choice under risk. After presenting the equilibrium bidding strategies in a few standard auctions,

Section 2 gives the main result of the paper: the utility equivalence of many auction mechanisms.

It also contains some results concerning the effect of risk aversion on the first price auction.

Section 3 looks into the effect of risk aversion on the linear equilibrium of the sealed-bid double

auction. Section 4 concludes.

1 A Short Review of the Dual Theory of Choice Under Risk

Given a random variable r, defined on some probability space Ω and taking values in some real

interval [m, 1], let Gr be its decumulative distribution function (DDF), which is defined by

Gr(x) = Pr{r > x}, m ≤ x ≤ 1.

It is known that Gr is nonincreasing, right-continuous and satisfies Gr(1) = 0. The random

variable r, represents a lottery over monetary outcomes or, if the reader prefers, an asset that

pays the monetary amount r(ω) at state ω ∈ Ω.

The primitive of the dual theory is the set Γ of all nonincreasing, right-continuous functions

G : [m, 1] → [0, 1] that satisfy G(1) = 0. This set is interpreted as the set of all DDFs associated

with some random variable defined on some sufficiently rich probability space and taking values

in [m, 1]. The area under a DDF in Γ resembles a production possibilities set and the problem

of ranking DDFs is essentially the same as ranking production possibilities sets.

Let � be a complete preference relation on Γ. Yaari (1987) imposes the following axioms on
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�:

1. Continuity (with respect to L1-convergence),

2. Monotonicity: if Gr ≥ Gs then Gr � Gs,

3. Dual independence: r, s and t are pairwise comonotonic and Gr � Gs, then Gαr+(1−α)t �
Gαs+(1−α)t.

Continuity is a technical requirement. Monotonicity requires that if Gr stochastically dom-

inates Gs then Gr � Gs. The dual independence axiom is where the dual theory departs from

the traditional expected utility theory. It deals with portfolios of comonotonic random vari-

ables. Note that αr + (1 − α)t denotes the random variable that awards αr(ω) + (1 − α)t(ω)

at state ω ∈ Ω. In particular, it is not the probability mixture of the random variables r

and t. Two random variables, r and s, are comonotonic if for every pair of states, ω and ω′,

(r(ω) − r(ω′)) (s(ω) − s(ω′)) ≥ 0. In words, r and s are comonotonic if, when going from state

ω to ω′ in Ω, both random variables move (weakly) in the same direction. Dual independence

requires that whenever r, s and t are pairwise comonotonic and Gr � Gs, then any portfolio

containing a proportion α of r and 1−α of t should be weakly preferred to a portfolio containing

α of s and 1− α of t.

Before we present Yaari’s representation theorem we need the following notation. For any

monetary outcome x and probability p, [x; p] denotes the lottery that yields x with probability

p and m with the complementary probability. With the aid of the above axioms Yaari (1987)

shows the following:

Theorem 1 A complete preference relation � satisfies continuity, monotonicity and dual inde-

pendence if, and only if, there exists a continuous and non decreasing real function, g, defined on

the unit interval, such that for all Gr and Gs belonging to Γ,

Gr � Gs ⇔
∫ 1

m
g(Gr(t)) dt ≥

∫ 1

m
g(Gs(t)) dt.

Moreover, the function g, which is unique up to a positive affine transformation, can be selected

in such a way that, for all p ∈ [0, 1], g(p) solves the preference equation

[1; p] ∼ [g(p); 1]. (1)

The function g is analogous to the von Neumann-Morgenstern utility function and, in a sense,

we can say that g represents the agent’s preferences. However, since it takes probabilities as an

input, we can call it a “probability-evaluation” function instead of utility function.
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Graphically, an agent whose preferences are described by the dual theory evaluates random

variables according to the area under a suitable transformation (the function g) of their DDF.

Analogously, an agent whose preferences satisfy the expected utility axioms, evaluates random

variables according to the area “to the left” of a suitable transformation (the von Neumann-

Morgenstern utility function) of the (generalized) inverse of their DDF.

For any random variable r, let

U(r) = m+
∫ 1

m
g(Gr(x)) dx

where g is defined in equation 1. This representation ensures that the utility of $y with certainty

is y, for all y ∈ [m, 1]. Theorem 1 says that agents will chose among random variables so as

to maximize U . Further, Yaari (1987) also shows that for any random variable r, the agent

is indifferent between r and getting U(r) with certainty. In other words, U(r) is the certainty

equivalent of r. Another important property of he above representation is that the utility of

the sum of two comonotonic random variables is equal to the sum of their respective utilities.

Formally, if r and s are comonotonic random variables then U(r + s) = U(r) + U(s).

One of the appealing features of the dual theory is that, unlike under the expected utility

theory, the agent’s attitude towards risk is not entangled with his attitude towards wealth. More

specifically, under the dual theory, the marginal utility of wealth is constant and this feature

is consistent with any attitude towards risk. Specifically, Yaari (1987) shows that a preference

relation � that satisfies the dual theory’s axioms exhibits risk aversion if and only if the function

g that represents � is convex. The property of constant marginal utility of wealth is not a

particularly appealing feature of individual preferences, but it is not especially unappealing when

one wants to model firm behavior. One may want to think of a firm as being, on the one hand,

risk averse, while on the other hand as evaluating each additional dollar independently of the

level of wealth (or profits). This kind of behavior is precluded by the expected utility hypothesis.

Also, while the linearity of preferences in money is and admittedly unrealistic assumption, within

the dual theory it constitutes a relaxation of the straight-jacket imposed by the usual assumption

of risk neutrality.

In this paper we are interested in the effect of changes in the degree of agents’ risk aversion on

equilibrium outcomes. For this purpose, it is necessary to understand what it means for one agent

to be more risk averse than another. As Yaari (1986) says, since risk aversion is characterized by

the convexity of the function g, it would be natural to define an agent as being more risk averse

than the another if, and only if, the former’s g is more convex than the latter’s. Formally, we

have the following:1

1See Yaari (1986) for various and equivalent interpretations of this definition.
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Definition 1 Let �1 and �2 be two preference relations that satisfy the dual theory’s axioms

and that are represented by the functions g1 and g2, respectively. We say that �1 is more risk

averse than �2 if, and only if, there exists a convex function h, defined on the unit interval, such

that g1 = h ◦ g2.

The linearity of preferences in monetary outcomes and the characterization of risk aversion as

the convexity of the function g that represents them make the dual theory very appealing for the

analysis of auctions. The linearity of the utility functional in wealth makes the analysis not too

cumbersome and in some cases as simple as the case of risk neutral buyers. The characterization

of the risk attitude by means of the convexity of a univariate nondecreasing function makes it

relatively easy to analyze the effect of risk aversion on the outcome of auctions. These observations

determine our task in the following sections.

2 Auctions with the Dual Theory

In order to motivate the main result of this paper, we start by calculating the equilibrium strate-

gies of three standard auctions and the corresponding buyers’ utilities.

There are n potential bidders, each of whose valuations for the object is drawn independently

from a strictly increasing and twice continuously differentiable distribution function F : [0, 1] →
[0, 1].

Bidders’ preferences satisfy the dual theory’s axioms and are represented by the dual function

g : [0, 1] → [0, 1] which is normalized so that g(0) = 0 and g(1) = 1.

Second price auction

According to the second price auction with reserve price b0, all participating bidders simultane-

ously bid a price b ∈ [b0,∞) and the object is awarded to the bidder who bids the highest price.

(In case of a tie, the object is randomly awarded to one of the bidders who made the highest bid,

according to some fixed random rule.) The winner pays a price equal to the highest bid among

the losers’ bids or b0, whichever is highest.

As bidders whose valuation of the object is less than the reserve price have no incentive to

participate in the auction, consider bidder 1 with a valuation of v ≥ b0. Any bid b defines the

random variable of bidder 1’s earnings, which is denoted by ẽb. It is well known that the random

variable ẽv stochastically dominates ẽb for all b 
= v and therefore, since the agents’ preferences

are monotonic with respect to stochastic dominance, we conclude that a symmetric equilibrium

in this game dictates that all buyers with valuation v ≥ b0 should bid their true valuation.

Letting ṽi denote the random variable of buyer i’s true valuation, in equilibrium the earnings
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of bidder 1, whose valuation for the object is v ≥ b0, are distributed as follows:

Pr(ẽv > e) = Pr([v −max(b0, ṽ2, . . . , ṽn)]+ > e)

=




1 if e < 0

Fn−1(v − e) if 0 ≤ e < v − b0

0 if e ≥ v − b0.

Since all the buyers are ex ante identical and the rules of the game are anonymous, the interim

utility of a bidder with valuation v of participating in a second price auction is

∫ v−b0

0
g(Fn−1(v − e))de

which, by the change of variables x = v − e, is equal to

∫ v

b0
g(Fn−1(x))dx.

First price auction

According to this auction mechanism, bidders who wish to participate submit bids above the

reservation price b0, and the bidder with the highest bid gets the object for which he pays his

own bid.

Again, we are interested in finding a symmetric equilibrium, where the common equilibrium

bidding strategy, β, is invertible. Buyers who value the object below the reservation price have

no incentive to participate. Therefore consider a bidder with valuation v ≥ b0, and assume that

he bids b ≤ v (bidding more than the true valuation can never be optimal), while the other

bidders play according to the equilibrium strategy β. We first need to calculate the decumulative

distribution of his earnings, ẽb, which is easily seen to be

Pr(ẽ > e) =




1 if e < 0

Fn−1(β−1(b)) if 0 ≤ e < v − b

0 if e ≥ v − b.

Therefore the agent’s utility when the other bidders behave according to β is

U(v, b) =
∫ 1
0 g(Pr(ẽ > e)) de

= (v − b)g(Fn−1(β−1(b))).

(2)

Using a standard argument we can now deduce that the symmetric equilibrium strategy of a
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bidder with valuation v ≥ b0 is

β(v) = v −
∫ v
b0
g(Fn−1(x)) dx
g(Fn−1(v))

. (3)

Substituting into equation (2) we get that the equilibrium interim utility of a bidder is

U(v, β(v)) =
∫ v

b0
g(Fn−1(x)) dx,

which is the same utility he gets from participating in the second price auction.

All pay auction

According to this auction mechanism, each bidder pays his own bid but only the bidder who bids

the highest price gets the object.

Again, we are interested in finding a symmetric equilibrium, β. Consider a bidder with

valuation v > b0, and assume that he bids b ≤ v while the other bidders play according to the

equilibrium strategy β. The decumulative distribution of his earnings, ẽb is given by

Pr(ẽb > e) =




1 if e < −b
Fn−1(β−1(b)) if − b ≤ e < v − b

0 if e ≥ v − b.

Therefore the utility for an agent with valuation v of a bid b when the other bidders behave

according to β is
U(v, b) = −b+ ∫ v−b

−b g(Fn−1(β−1(b))) dx

= −b+ v g(Fn−1(β−1(b)).
(4)

Using a standard argument we can deduce that the symmetric equilibrium strategies are given

by

β(v) = vg(Fn−1(v))−
∫ v

b0
g(Fn−1(x))dx.

Substituting into equation (4) we get that the equilibrium interim utility of a bidder is

U(v, β(v)) =
∫ v

b0
g(Fn−1(x)) dx,

which is the same utility he gets from participating in a first or second price auction.

Utility equivalence

The utility equivalence of the above three auctions, suggests that there might be a large family of

auctions among which ex ante identical buyers are indifferent. This is what we want to investigate

in this section.
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There are n bidders, each of whose valuations of the single object is independently drawn from

a strictly increasing and twice continuously differentiable distribution function Fi : [0, 1] → [0, 1].

We denote by F−i : [0, 1]n−1 → [0, 1] the joint distribution of all the bidders’ valuations except

for bidder i.

Every equilibrium of an auction game, can be associated to an incentive compatible direct

revelation mechanism (see Myerson (1981)). In our case, letting V = [0, 1]n be the set of possible

valuation profiles, a direct revelation mechanism is defined as an n-tuple 〈(Ii, ti)ni=1〉 of pairs of

functions, one for each agent where Ii : V → {0, 1} is such that
∑n

i=1 Ii(v) ≤ 1 for all v ∈ V , and

ti : V → [0, 1]. The function Ii is an indicator function that takes the value 1 if and only if agent

1 wins the object. The function ti returns player i’s payment to the seller as a function of the

valuations profile. The restriction that
∑n

i=1 Ii(v) ≤ 1 just says that no more than one agent can

get the object. If the mechanism awards the object to a bidder with the highest valuation, we

say that auction is ex-post efficient. Note that the probability that a bidder i of type vi wins the

auction is given by Qi(vi) =
∫
V−i

Ii(vi, v−i)dF−i(v−i), where V−i = [0, 1]n−1 is the set of valuation

profiles of the agents other than i. In particular, if the mechanism is efficient and if the agents’

valuations are identically distributed according to F , then Qi(vi) = Fn−1(vi). Together with

the primitives of the model, a direct revelation mechanism defines a Bayesian game. The direct

mechanism is said to be incentive compatible if truthful revelation (the identity function) is an

equilibrium of the corresponding Bayesian game. We can now state our payoff-equivalence result:

Proposition 1 Assume that a risk averse buyer behaves according to the dual theory of choice

under risk with “probability-evaluation” function g. Any incentive compatible auction mechanism

that gives 0 utility to the bidders with valuation 0 yields a utility level of
∫ vi
0 g(Qi(t)) dt to a bidder

with valuation vi. Consequently, bidder i is indifferent among all auction mechanisms that induce

the same winning probability function Qi and that yield a 0 utility to his lowest valuation type.

Proof : Consider a risk averse buyer whose risk preferences are represented by the dual function

g. Let xi : V → IR be the random variable of bidder i’s payoff determined by the mechanism

〈(Ii, ti)i∈N 〉:
xi(vi, v−i) = viI(vi, v−i)− ti(vi, v−i).

Letting Gxi(vi) be the DDF of the above random variable conditional on vi being the type of

agent i, type vi’s utility of xi(vi, v−i) is:

Ui(vi) = m+
∫ 1

m
g(Gxi(vi))dxi

where m is a lower bound of xi.

Since the mechanism is incentive compatible, type vi of agent i should prefer the above random

variable to the random payoff that he would obtain if he reports any other type v′i:

8



y(vi, v
′
i) = viI(v′i, v−i)− ti(v′i, v−i).

Adding and subtracting v′iIi(v′i, v−i) in the above expression we get

yi(vi, v
′
i) = xi(v′i, v−i) + (vi − v′i)Ii(v

′
i, v−i).

That is, by reporting v′i, type vi gets a sum of two random variables: the random payoff type v′i
would get and the difference in valuations vi − v′i that he obtains when he wins the object. Let r

and s be two comonotonic random variables such that r and xi(v′i, v−i) have the same DDF and

so do s and (vi − v′i)Ii(v′i, v−i). By comonotonicity, type vi’s utility of the sum r + s is the sum

of the utilities. By the way r and s were chosen, and since, by independence, both types vi and

v′i evaluate random variables (defined on the other bidders’ types) in the same way, we have that

this sum of utilities is

Ui(v′i) + (vi − v′i)g(Qi(v′i)).

Since xi(v′i, v−i) and (vi − v′i)Ii(v′i, v−i), however, are not comonotonic, the random variable

yi(vi, v
′
i) second-order stochastically dominates r + s (see Müller (1997) or Goovaerts, Dahene,

and De Schepper (2000)). Therefore, since agent i is risk averse, vi’s the utility of yi(vi, v
′
i) is at

least as high as Ui(v′i) + (vi − v′i)g(Qi(v′i)). By incentive compatibility of the mechanism we have

that type vi prefers xi to yi, which in turn implies that

Ui(vi) ≥ Ui(v′i) + (vi − v′i)g(Q(v′i)).

Since this is true for every pair of possible types, we have that Ui is differentiable and

U ′
i(vi) = g(Qi(vi)) ∀vi ∈ [0, 1].

As a result, since the lowest type gets 0 utility we get

Ui(vi) =
∫ vi

0
g(Qi(t) dt.

✷

Corollary 1 Assume that bidders’ valuations are independently and identically distributed ac-

cording to F . In any ex-post efficient mechanism that yields 0 utility to the lowest type of bidder

i, the equilibrium utility of a bidder with valuation vi is
∫ vi
0 g[Fn−1(t)] dt. Consequently, bidders

are indifferent among all the ex-post efficient auction mechanisms that give 0 utility to the lowest

valuation bidders.
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Matthews (1987) shows that an expected utility maximizer bidder with CARA von Neumann

Morgenstern utility function is indifferent between participating in a first price auction or in a

second price auction with IID ex ante identical buyers. Since a buyer who satisfies the dual theory

axioms exhibits constant average risk aversion, the above result suggests that constant absolute

risk aversion is what lies behind the utility equivalence result. This conjecture, however, is left

for further research.

Risk aversion in the first price auction

The equilibrium bidding function that appears in (3) allows us to predict the effect of an in

increase buyers’ risk aversion on their bids, and therefore on the seller’s revenue. Remember that

a dual utility maximizer becomes more risk averse when his dual function undergoes a convex

transformation.2

Proposition 2 Suppose that the buyers’ valuations are identically and independently distrib-

uted and that all buyers share a common dual utility function. In the first price auction, as

bidders become more risk averse, they make uniformly higher bids.

Proof : An immediate corollary of the following lemma.

Lemma 1 Let h : [0, 1] → [0, 1] and H : [0, 1] → [0, 1] be two continuous and increasing functions

with h(0) = 0 and H(0) = 0. Assume further that H is strictly increasing and that h is convex.

Then, for all v ∈ (0, 1], ∫ v
b0
h(H(t)) dt
h(H(v))

≤
∫ v
b0
H(t) dt
H(v)

.

Proof : Take v ∈ (0, 1]. Since g is convex, for all λ and p in [0, 1] we have g(λp) ≤ λ g(p).

Letting λ = H(t)/H(v) and p = H(v), this means that

g(H(t)) ≤ H(t)
H(v)

g(H(v)), ∀t ≤ v.

Consequently, taking integrals on both sides,

∫ v

b0
g(H(t)) dt ≤ g(H(v))

∫ v
b0
H(t) dt

H(v)
.

Rearranging, we get the desired result. ✷

2Proposition 2 can be found in Salo and Weber (1995), though with a different dressing. Since the proof is
simple, we give it here for the reader’s convenience.
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Since under the dual theory, becoming more risk averse means applying a convex transformation

to the dual utility function, the above lemma implies that more risk averse buyers shade their

bids less. ✷

Riley and Samuelson (1981) show that in the case of ex ante identical risk averse expected

utility maximizing buyers, the reserve price that maximizes the seller’s revenue decreases with

the buyers’ degree of risk aversion. The following proposition shows that the same holds in the

case of risk averse buyers who behave according to the dual theory.

Proposition 3 Assume that the buyers’ valuations are drawn independently and identically

from a strictly increasing and twice continuously differentiable distribution F : [0, 1] → [0, 1],

and that all buyers share a common probability-evaluation function, g. Assume that the seller

is risk neutral. Then, in the first price auction, an interior optimal seller reserve price is defined

implicitly by

b∗ =

g[Fn−1(b∗)]
Fn−1(b∗)

∫ 1

b∗

Fn−1(v)
g[Fn−1(v)]

dF (v)

F ′(b∗)
.

Further, this optimal reserve price is a non-increasing function of the buyers’ risk aversion.

Proof : The expected revenue of a first price auction with reserve price b, and when the bidders’

preferences are represented by the function g, is given by

Rg(b) =
∫ 1

b
(v −

∫ v
b g[Fn−1(x) dx]
g[Fn−1(v)]

) dFn(v).

A risk neutral seller chooses a reserve price so as to maximize the expected revenue. Taking

derivatives with respect to b and equalizing to yields

−nb∗Fn−1(b∗)F ′(b∗) + n

∫ 1

b∗
g[Fn−1(b∗)]

Fn−1(v)
g[Fn−1(v)]

dF (v) = 0. (5)

Consequently, an interior solution to the seller’s problem satisfies

b∗ =
g[F n−1(b∗)]
F n−1(b∗)

∫ 1
b∗

F n−1(v)
g[F n−1(v)]

dF (v)

F ′(b∗)
, (6)

which proves the first part of the claim.

Now let h : [0, 1] → [0, 1] be a convex function such that h(0) = 0 and h(1) = 1 and let f ≡ h◦g.
The function f represents preferences that are more risk averse than the preferences represented

by g. Letting Rf be the revenue function when the bidders’ preferences are represented by f , we

will show first that the difference Rg −Rf is a non-decreasing function of the reserve price. Since
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h is convex, for all λ and p in [0, 1] we have h(λp) ≤ λh(p). Taking λ = g[Fn−1(b∗)]/g[Fn−1(v)]

and p = g[Fn−1(v)] we have

f(Fn−1(b∗)) ≤ g[Fn−1(b∗)]
g[Fn−1(v)]

f(Fn−1(v)).

Rearranging and multiplying both sides by Fn−1(v) we get

f(Fn−1(b∗))
Fn−1(v)

f(Fn−1(v))
≤ g[Fn−1(b∗)]

Fn−1(v)
g[Fn−1(v)]

. (7)

Using equation (5) we get

d(Rg −Rf )
db

= n

∫ 1

b
(g[Fn−1(b∗)]

Fn−1(v)
g[Fn−1(v)]

− f [Fn−1(b∗)]
Fn−1(v)
f [Fn−1(v)]

) dF (v)

which by (7) is non-negative. Therefore the difference Rg −Rf is non-decreasing. Now let bg and

bf be optimal reserve prices when the preferences are represented by g and f , respectively. We

must have, Rg(bg) ≥ Rg(bf ) and Rf (bf ) ≥ Rf (bg), which implies that

Rg(bg)−Rf (bg) ≥ Rg(bf )−Rf (bf ).

Since Rg −Rf is non-decreasing, we conclude that bg ≥ bf . ✷

The Case of Expected Utility Maximizers: A Comparison

An agent who satisfies the axioms of the expected utility theory is characterized by his von

Neumann-Morgenstern utility function, u, that can be chosen so as to solve the following pref-

erence equation: [1, u(x)] ∼ [x, 1] for all x in the domain (see Yaari (1987) or Fishburn (1982)).

Similarly, the dual “probability-evaluation” function that represents the preferences of an agent

who behaves according to the dual theory can be chosen so as to solve [1, p] ∼ [g(p), 1] for all

p ∈ [0, 1] (see Theorem 1). Consequently, given fixed preferences over lotteries, the functions

u and g that solve the above preference equations are the inverses of each other. It would be

interesting to compare the equilibrium bidding functions of buyers who behave according to the

von Neumann-Morgenstern utility function u with those of buyers who behave according to the

dual functions g. Although no general result is available, in the case of constant relative risk

aversion the following claim is easily proved.

Proposition 4 Consider an individual with von Neumann-Morgenstern (CRRA) utility function

u(x) = x1/m participating in a n-bidder first price auction. His equilibrium behavior is identical

to the equilibrium behavior of a bidder whose dual function is given by g(p) = pm. In other
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words, in both cases the best response correspondences coincide.

Proof : Note that an individual whose valuation is vi submits a bid of b, then he gets the lottery

[vi − b, p(b)], where p(b) is the probability that the individual wins the object given his bid and

the other bidders’ strategies. For every type, bidding above his valuation is a strictly dominated

strategy. Therefore it is enough to compare the two different preferences over the family of

lotteries of the form [x, p], where x ≥ 0. Now, in this case an individual whose risk preferences

can be represented by the von Neumann-Morgenstern utility function u prefers lottery [x, p] to

lottery [y, q] if and only if x1/mp > y1/qq, which in turn holds if and only if xpm > yqm. But this

last inequality holds if and only if an individual whose risk preferences can be represented by the

dual function g prefers lottery [x, p] to lottery [y, q]. ✷

Therefore, the behavior in a first price auction of an expected utility maximizer with a von

Neumann-Morgenstern utility function u(x) = x1/m is indistinguishable from the behavior of

a bidder whose preferences can be described by the dual theory with “probability-evaluation”

function g(p) = pm. Clearly, this does not mean that the utility equivalence holds for this kind

of expected utility maximizer. We know that this kind of bidder is not indifferent between first

price and second price auctions. The result, however, does not generalize for other von Neumann-

Morgenstern utility functions.

3 Risk aversion in a Sealed-Bid Double Auction

In this section we look at the sealed-bid double auction introduced by Chatterjee and Samuelson

(1983), when both bargainers behave according to the dual theory of choice under risk. As will

be seen, our analysis follows closely that of Leininger, Linhart, and Radner (1989), which is again

evidence that introducing risk aversion via the dual theory does not add any technical difficulty

to the analysis. We focus on the “linear” strategies of this mechanism and check the effect of

changes in the degree of risk aversion on the equilibrium strategies, on the probability of trade,

and on the ex post inefficiency of the equilibrium outcome.

A potential buyer and a potential seller are bargaining over the price of a single object. Their

respective valuations of the object are independently, identically and uniformly distributed over

[0, 1]. The sealed-bid mechanism is defined as follows: The buyer and the seller simultaneously

submit their bids, b and s, respectively. If b ≥ s, trade takes place at the price (b+ s)/2. If b < s

there is no trade.

We are interested in finding equilibrium strategies when both players’ preferences satisfy the

axioms of the dual theory of choice under risk, the buyer’s dual function being f and the seller’s

g. Further, we are interested in the influence of changes in the degree of risk aversion on the
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equilibrium strategies and on the equilibrium terms of trade.

Consider a buyer with valuation v and let ẽb be the random variable of his earnings when

he bids b and the seller’s bid is distributed according to the cumulative distribution function S.

Then we have
Pr{ẽb > x} = Pr{v − b+s

2 > x and s < b}

= Pr{s < 2(v − x)− b and s < b}

= Pr{s < min{2(v − x)− b; b}}

= S(min{2(v − x)− b; b}).
Consequently, since the buyer’s earnings are bounded from above by v − b/2, his utility from

bidding b is
U(v, b) =

∫ v−b/2
0 f [S(min{2(v − x)− b; b})] dx

=
∫ v−b
0 f [S(b)] dx+

∫ v−b/2
v−b f [S(2(v − x)− b)] dx.

Similarly, the utility of a seller with valuation c of a bid s when the buyer’s bid is distributed

according to the cumulative distribution function B is given by

V (c, s) =
∫ 1+s

2
−c

0 g[(1−B(max{2(c+ x)− s; s}))] dx

=
∫ s−c
0 g[1−B(s)] dx+

∫ 1+s
2

−c
s−c g[1−B(2(c+ x)− s)] dx.

(8)

The buyer’s optimal bid must satisfy the first order condition:

∂U

∂b
= −(f ◦S(b))+

∫ v−b

0
(f ◦S)′(b) dx−

∫ v−b/2

v−b
(f ◦S)′(2(v−x)−b) dx−1/2(f ◦S)(0)+f ◦S(b) = 0.

Making the change of variable y = 2(v − x)− b, the above equation can be written

−(f ◦ S(b)) + (v − b)(f ◦ S)′(b)− 1/2
∫ b

0
(f ◦ S)′(y) dy − 1/2(f ◦ S)(0) + (f ◦ S)(b) = 0

or

−(f ◦ S(b)) + (v − b)(f ◦ S)′(b)− (f ◦ S)(b)− (f ◦ S)(0)
2

− 1/2(f ◦ S)(0) + (f ◦ S)(b) = 0

which implies

v =
1
2
(f ◦ S)(b)
(f ◦ S)′(b) + b. (9)
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The second order condition requires that

−3 (f ◦ S)′(b)
2

+
(f ◦ S)(b) (f ◦ S)′′(b)

2 (f ◦ S)′(b) < 0 (10)

which is satisfied if and only if the right hand side of (9) is strictly increasing. Therefore, if (10)

holds, equation (9) defines the inverse, β−1, of the buyer’s equilibrium strategy β which is strictly

increasing.

Similarly, taking derivatives of V (c, s) with respect to s in equation (8) we get

c =
1
2

g[1−B(s)]
(g ◦ (1−B))′(s)

+ s (11)

which determines the inverse σ−1 of the seller’s strictly increasing equilibrium strategy σ. Since

β is strictly monotone and the buyer’s valuation is uniform, we have

B[β(x)] = Pr[β(v) ≤ β(x)]

= Pr(v ≤ x)

= x.

Therefore

B = β−1.

Similarly,

S = σ−1.

Consequently, the first order conditions can be written as

B(x) =
1
2
(f ◦ S)(x)
(f ◦ S)′(x) + x (12)

and

S(x) =
1
2
[g ◦ (1−B)](x)
[g ◦ (1−B)]′(x)

+ x. (13)

In order to get an explicit analytic solution to the system of differential equations (12)–(13),

we must make some simplifying assumptions about the dual functions f and g. Specifically,

consider the case where the buyer’s and seller’s dual functions are given by

f(p) = kBp
α

and

g(p) = kSp
δ,

15



respectively. In this case, the first order conditions (12) and (13) become

B(x) = x+
1
2

S(x)
αS′(x)

and

S(x) = x− 1
2
1−B(x)
δB′(x)

.

It can be checked that the following cumulative distribution functions solve the above system of

differential equations:

B(b) =




0 if b < a (1−h)
1−a

a+ (b− a)
1− a

h− a
if a (1−h)

1−a ≤ b ≤ h

1 if b ≥ h

S(s) =




0 if 0 ≤ s < a

(s− a)h
h− a

if a ≤ s ≤ 1− a1−h
h

1 if s ≥ 1− a1−h
h

where

a =
α

α+ δ + 2α δ
(14)

and

h =
α (1 + 2 δ)
α+ δ + 2α δ

. (15)

This solution corresponds to the following linear equilibrium strategies:

β(v) = h− (h− a) (1− v)
1− a

σ(c) = a+
h− a

h
c.

(16)

It is not difficult to check that this is the only linear equilibrium of the sealed-bid mechanism.

According to these equilibrium strategies, the buyer will never bid more than h and the seller

will never bid less than a. Therefore, the range of equilibrium prices is the interval [a, h]. Also,

since

β(1) = h = σ(h) < σ(1)
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and

β(0) < β(a) = a = σ(0),

the linearity of the strategies imply that β(v) < σ(c), for all v ≤ c. In other words, there is trade

only if v > c. On the other hand, the equilibrium is ex-post inefficient because there might be

no trade even if v > c.

Proposition 5 Assume that the buyer’s preferences satisfy the dual theory axioms and can be

represented by the dual function f(p) = pα. Similarly, assume that the seller’s preferences can

be represented by the dual function g(p) = pδ. In the only linear equilibrium, the equilibrium

range of prices moves to the right as the buyer becomes more risk averse, and moves to the left

as the seller becomes more risk averse. Further, the probability of trade is an increasing function

of the trades’ degree of risk aversion. When both players have the same risk preferences, namely

α = δ = m, the equilibrium price interval converges to [0, 1] as the degree of risk aversion, m,

becomes arbitrarily large. In this case the probability of trade tends to 1/2 as m goes to ∞.

Proof : It can be checked that both a and h are strictly increasing functions of α and strictly

decreasing functions of δ. Consequently, the range of equilibrium prices moves to the left as the

buyer becomes more risk averse, and moves to the right as the seller becomes more risk averse.

Also, when both players have the same risk preferences, namely α = δ = m, the range of

equilibrium prices is

[
1

2 + 2m
,
1 + 2m
2 + 2m

].

It can be seen that as m tends to ∞, the price interval tends to [0, 1], which means that as risk

aversion becomes arbitrarily large, the ex post inefficiency of the mechanism tends to vanish.

This feature can also be seen from the probability of trade. Let v be the valuation of the

potential buyer. Given the equilibrium strategies in (16) the probability of trade, conditional on

the buyer’s valuation, is

Pr{σ(c) ≤ β(v)} = Pr{c ≤ h (v−a)
1−a }

=




0 v < a
h (v−a)

1−a v ≥ a.
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Since there is trade only if v ≥ a, the overall probability of trade is

Pr{σ(c) ≤ β(v)} =
∫ 1
a

h (v−a)
1−a dv

= (1−a) h
2

= (α+2 α δ) (δ+2 α δ)

2 (α+δ+2 α δ)2
.

When both traders are risk averse, namely α, δ > 1, the above expression is increasing in α and

δ. This means that an increase in a player’s risk aversion, leads to an increase in the probability

of trade. When the seller and the buyer have the same risk preferences, namely when α = δ = m,

the probability of trade is
(1 + 2m)2

8 (1 +m)2

and tends to 1/2 as m tends to ∞. In other words, when the common degree of risk aversion

tends to infinity, the probability of trade tends to 1/2. This is because in the limit there is trade

if and only if the value of the object to the buyer is at least as large as the value of the object to

the seller. ✷

4 Concluding Remarks

It has been shown that the dual theory of choice under risk is quite apt for the analysis of

single item auctions. In particular, the introduction of risk aversion does not seem to complicate

the analysis of auctions beyond the standard difficulty of auctions with risk neutral buyers.

Many open issues remain that the theory needs to deal with before we conclude that it is a

most appropriate tool for the analysis of auctions. Among the topics for future research we

can mention the analysis of common value auctions, auctions with an endogenously determined

number of bidders, and especially, the design of optimal auctions.
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