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Glossary and Notation

Player A participant in a game.

Action set The set of actions that a player may choose.

Action profile A list of actions, one for each player.

Payoff The utility a player obtains from a given action profile.

1 Definition of the subject and its importance

Game theory concerns the interaction of decision makers. This interaction is modeled by

means of games. There are various approaches to constructing games. One approach is to

focus on the possible outcomes of the decision-makers’ interaction by abstracting from the

actions or decisions that may lead to these outcomes. The main tool used to implement

this approach is the cooperative game. Another approach is to focus on the actions that

the decision-makers can take, the main tool being the non-cooperative game. Within this

approach, strategic interactions are modeled in two ways. One is by means of dynamic, or

extensive form games, and the other is by means of static, or strategic games. Dynamic

games stress the sequentiality of the various decisions that agents can make. An essential

component of a dynamic game is the description of who moves first, who moves second, etc.

Static games, on the other hand, abstract from the sequentiality of the possible moves, and
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model interactions as simultaneous decisions, where the decisions may well be complicated

plans of actions that dictate different moves for different situations that may arise. All

extensive form games can be modeled as static games, and all strategic form games can be

modeled as extensive form games. But some situations may be more conveniently modeled

as one or the other kind of game.

This chapter reviews the main ideas and results related to static games, as well as some

interesting relationships that connect equilibrium concepts with the idea of rationality.

The objective is to introduce the reader to the area of static games and to stimulate his

interest for further knowledge of game theory in general. For a comprehensive exposition

of some results not covered in this chapter, the reader is referred to the many excellent

textbooks available on game theory. Fudenberg and Tirole (1991) Osborne and Rubinstein

(1994), Osborne (2004), Binmore (2007) constitute only a partial list.

Although the definition of a static game is a very simple one, static games are a very

flexible model which allows us to analyze many different situations. In particular, one

can use them to analyze strategic interactions that involve either common interests or

diametrically opposed interests. Similarly, one can also use static games to model situations

where players have either symmetric or asymmetric information. The range of applications

of static games is very wide and covers many disciplines, such as economics, political

science, biology, philosophy, and computer science among others.

2 Introduction

In this section we introduce some examples that will be used later to motivate different

concepts. We also introduce the definition of a static game.

The prisoner’s dilemma involves a donor who is interested in donating some amount

of money to two universities. The donor decides that the amount each university

will receive depends on the content of the messages the presidents of the respective
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universities will send to him. Each university will send simultaneously one of two

messages. One possible message is “Give him 2” and the other is “Give me 1.” The

donor will do exactly as told. For instance, if University I sends the message “Give

me 1” and University II sends “Give him 2,” the donor will donate $3 to University

I and $0 to University II. This game can be described by means of the following

matrix, where the entries represent the payoffs for University I and University II,

respectively, that result from the corresponding action choices:

University II

Give him 2 Give me 1

University I Give him 2 2, 2 0, 3

Give me 1 3, 0 1, 1

The battle of the sexes consists of two friends, She and He, who want to go out to-

gether, but have no means of communication. They have to decide, each one sepa-

rately but both simultaneously, whether to go to a boxing match or to a ballet show.

For both of them, the worst possible outcome would be to choose different events and

not meet. But if they meet, he would rather meet her at the boxing match, while

she would rather meet him at the ballet. The battle of the sexes can be described

by the following matrix:

She

Box Ballet

He Box 2, 1 0, 0

Ballet 0, 0 1, 2

Again, the entries of this matrix represent the payoffs that he and she get, as a result

of their corresponding choices.
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Chicken models two drivers who approach each other on a narrow street. If none of them

slows down they’ll have an accident and their corresponding payoffs will be 0. But

if at least one of them slows down, the accident is prevented. The problem is that

both of them would like the other to slow down. If only one driver slows down, this

driver gets a payoff of 2 and the other driver gets a payoff of 7. If both drivers slow

down, then both drivers get a payoff of 6. This situation can be described by the

following matrix.

Driver 2

Slow Down Speed up

Driver 1 Slow Down 6, 6 2, 7

Speed up 7, 2 0, 0

Matching Pennies involves two friends, each of whom places a coin on a table. If both

coins are placed heads up or tails up, then friend 1 gets one dollar from friend 2.

If one coin is placed heads up and the other tails up, then friend 1 pays one dollar

to friend 2. Matching pennies can be described by the following matrix, where the

entries are the amounts of money that the friends get from each other.

Friend 2

Heads Tails

Friend 1 Heads 1, -1 -1, 1

Tails -1, 1 1, -1

The above examples of strategic interactions can be modeled as static games. A static

game is a formalization of a strategic situation according to which players choose their ac-

tions separately and simultaneously, and as a result obtain certain payoffs. The interaction

that a static game models need not require that players take their actions simultaneously.

But the interaction is modeled by defining actions in such a way that lets us think of the

players as acting simultaneously.
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All of the above examples involve a set of players, and for each player there is a set

of available actions and a function that associates a payoff level to each of the profiles of

actions that may result from the players’ choices. These are the three essential components

of a static game, as formalized in the following definition.

Definition 1 A static game is a triple 〈N, (Ai)i∈N , (ui)i∈N〉 where N is a finite set of

players, and for each player i ∈ N , Ai is i’s set of actions, and ui : ×k∈NAk → R is player

i’s utility function.

In the prisoner’s dilemma the set of players is N = {University I, University II}; the

sets of actions are AI = AII = {Give me 1, Give him 2}; the utility function of University

I is uI(Give me 1, Give me 1) = 1, uI(Give me 1, Give him 2) = 3, uI(Give him 2, Give

me 1) = 0, uI(Give him 2, Give him 2) = 2; and the utility function of University II is

uII(Give me 1, Give me 1) = 1, uII(Give me 1, Give him 2) = 0, uII(Give him 2,Give me

1) = 3, uI(Give him 1, Give him 1) = 1.

In this chapter we sometimes refer to static games simply as games. For any game

〈N, (Ai)i∈N , (ui)i∈N〉, the set of action profiles ×k∈NAk is denoted by A, and a typical

action profile is denoted by a = (ai)i∈N ∈ A. If A is a finite set, then we say that the game

is finite. Player i’s utility function represents his preferences over the set of action profiles.

For instance, for any two action profiles a and a′ in A, ui(a) ≥ ui (a
′) means that player i

prefers action profile a to action profile a′. Clearly, although player i has preferences over

action profiles, he can only affect his own component, ai, of the profile.

3 Nash equilibrium

One objective of game theory is to select, for each game, a set of action profiles that are

interesting in some way. These action profiles may be interpreted as predictions of the

theory, or prescriptions for the players to follow, or simply as equilibrium outcomes in the
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sense that if they occur, the players do not wish that they had acted differently. These

action profiles are formally given by solution concepts, which are functions that associate

each strategic game with the selected set of action profiles. The central solution concept in

game theory is known as Nash equilibrium. The hypothesis behind this solution concept is

that each player chooses his actions so as to maximize his utility, given the profile of actions

chosen by the other players. To give a formal definition of the Nash equilibrium concept,

we first introduce some useful notation. For each player i ∈ N , let A−i = ×k∈N\{i}Ak be

the set of the other players’ profiles of actions. Then we can write A = Ai×A−i, and each

action profile can be written as a = (ai, a−i) ∈ Ai × A−i, thereby distinguishing player i’s

action from the other players’ profile of actions.

Definition 2 The action profile a∗ = (a∗i )i∈N ∈ A in a game 〈N, (Ai)i∈N , (ui)i∈N〉 is a

Nash equilibrium if for each player, i ∈ N , and every action ai ∈ Ai of player i, a∗ is at

least as good for player i as the action profile (ai, a
∗
−i). That is, if

ui(a
∗) ≥ ui(ai, a

∗
−i) for all ai ∈ Ai and for all i ∈ N.

It is a strict Nash equilibrium if the above inequality is strict for all alternative actions

ai ∈ Ai \ {a∗i }.

3.1 Analysis of some finite games

Prisoner’s Dilemma Recall that the prisoner’s dilemma can be described by the follow-

ing matrix:

University II

Give him 2 Give me 1

University I Give him 2 2, 2 0, 3

Give me 1 3, 0 1, 1
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The action profile (Give me 1, Give me 1) is a Nash equilibrium. Indeed,

uI(Give me 1, Give me 1) = 1 ≥ uI(Give him 2,Give me 1) = 0

and

uII(Give me 1,Give me 1) = 1 ≥ uII(Give me 1,Give him 2) = 0.

On the other hand, the action profile (Give him 2, Give him 2) is not a Nash equi-

librium, since University I prefers action “Give me 1” if University II chooses action

“Give him 2”:

2 = uI(Give him 2,Give him 2) < uI(Give me 1,Give him 2) = 3.

Battle of the Sexes Recall that the battle of the sexes can be described by the following

matrix:

She

Box Ballet

He Box 2, 1 0, 0

Ballet 0, 0 1, 2

One can check that (Box, Box) is a Nash equilibrium and (Ballet, Ballet) is a Nash

equilibrium as well. It can also be checked that these are the only two action profiles

that constitute a Nash equilibrium.

Matching Pennies The reader can check that Matching Pennies has no Nash equilib-

rium.

Before we analyze the next example, we introduce a technical tool that allows us to

reformulate the definition of Nash equilibrium more conveniently. More importantly, this

alternative definition is the key to the standard proof of the existence of Nash equilibrium.
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Definition 3 Let G = 〈N, (Ai)i∈N , (ui)i∈N〉 be a strategic game and let i ∈ N be a player.

Consider a list of actions a−i = (a, . . . , ai−1, ai+1, . . . , an) ∈ ×k∈N\{i}Ak of all the players

other than i. The set of player i’s best responses to a−i is

Bi(a−i) = {ai ∈ Ai : ui(ai, a−i) ≥ ui(bi, a−i) for all bi ∈ Ai}.

The correspondence Bi : ×j 6=iAj � Ai that assigns to each (n − 1)-tuple of actions in

A−i the set of best responses to it is called the best response correspondence of player i.

The definition of a Nash equilibrium may be stated in terms of the players’ best response

correspondences, as stated in the following proposition.

Proposition 1 The action profile a∗ ∈ A is a Nash equilibrium if and only if every player’s

action is a best response to the other players’ actions. That is, if

a∗i ∈ Bi(a
∗
−i) for all i ∈ N.

Until now, all the examples involved games where the action sets contained two actions.

The next example is a game where the players’ action sets are infinite. We will use the

player’s best response correspondences to find all its Nash equilibria.

The War of Attrition Two animals, 1 and 2, are fighting over a prey. Each animal

chooses a time at which it intends to give up. Once one animal has given up, the

other obtains the prey; if both animals give up at the same time then they split the

prey equally. For each i = 1, 2, animal i’s willingness to fight for the prey is given

by vi > 0. The value vi is the maximum amount of time that animal i is willing to

spend to obtain the prey. Since fighting is costly, each animal prefers as short a fight

as possible. If animal i obtains the prey after a fight of length t, his utility will be

vi − t. We can model the situation as the game G = 〈{1, 2}, (A1, A2), (u1, u2)〉 where
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• A1 = [0,∞] = A2 (an element t ∈ Ai represents a time at which player i plans

to give up)

• u1(t1, t2) =


−t1 if t1 < t2

1
2
v1 − t2 if t1 = t2

v1 − t2 if t1 > t2

• u2(t1, t2) =


−t2 if t2 < t1

1
2
v2 − t1 if t1 = t2

v2 − t1 if t2 > t1

We are interested in the best response correspondences. First, we calculate player

1’s best response correspondence, B1(t2). There are three cases to consider.

Case 1: t2 < v1. In this case, v1 − t2 >
1
2
v1 − t2 and v1 − t2 > −t1. Consequently,

given that player 2’s action is t2, player 1’s utility function has a maximum

value of v1 − t2, which is attained at any t1 > t2. Therefore, B1(t2) = (t2,∞).

Case 2: t2 = v1. In this case, 0 = v1 − t2 >
1
2
v1 − t2. Therefore, player’s 1 utility

function u1(·, t2) has a maximum value of 0, which is attained at t1 = 0 and at

t1 > t2. Therefore, B1(t2) = {0} ∪ (t2,∞).

Case 3: t2 > v1. In this case 1
2
v1 − t2 < v1 − t2 < 0. As a result, player 1’s util-

ity function u1(·, t2) has a maximum value of 0, which is attained at t1 = 0.

Therefore, B1(t2) = {0}.

Summarizing, player 1’s best response correspondence is:

B1(t2) =


(t2,∞) if t2 < v1

{0} ∪ (t2,∞) if t2 = v1

{0} if t2 > v1

which is depicted in Figure 1.

Figure 1 about here
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Similarly, player 2’s best response correspondence is:

B2(t1) =


(t1,∞) if t1 < v2

{0} ∪ (t1,∞) if t1 = v2

{0} if t1 > v2

Combining the two best response correspondences we get that (t∗1, t
∗
2) is a Nash

equilibrium if and only if either t∗1 = 0 and t∗2 ≥ v1 or t∗2 = 0 and t∗1 ≥ v2. Figure 2

depicts the set of all the Nash equilibria as the intersection of the two best response

correspondences.

Figure 2 about here

Two things are worth noting. First, it is not necessarily the case that the player

who values the prey most wins the war. That is, there are Nash equilibria of the

war of attrition where the player with the highest willingness to fight for the prey

gives in first, and as a result the object goes to the other player. Second, in none of

the Nash equilibria is there a physical fight. All Nash equilibria involve one player

giving in immediately to the other. This second feature seems rather unrealistic,

since fights in “war of attrition”-like situations are commonly observed. If one wants

to obtain a fight of positive length in the war of attrition one needs to either drop the

Nash equilibrium concept and adopt an alternative one, or model the war of attrition

differently. We will adopt this second course of action later.

4 Existence

As the matching pennies example shows, not all games have a Nash equilibrium. The

following theorem, which dates back to Nash (1950) and Glicksberg (1952), states sufficient

conditions on a game for it to have a Nash equilibrium. An earlier version of this theorem

for the smaller but prominent class of zero-sum games can be found in von Neumann
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(1928) (translated in von Neumann (1959)). The standard proofs use Kakutani’s fixed

point theorem. We present here an alternative proof, due to Geanakoplos (2003), which

uses Brouwer’s fixed point theorem instead.

Theorem 1 The game 〈N, (Ai)i∈N , (ui)i∈N〉 has a Nash equilibrium if for all i ∈ N

• the set Ai of actions of player i is a nonempty compact convex subset of an Euclidean

space,

• the utility function ui is continuous,

• the utility function ui is concave in Ai.

Proof : (Geanakoplos) Define the correspondence ϕi : A � Ai by

ϕi(ā) = arg max
ai∈Ai

{Ui(ai, ā−i)− ‖ai − āi‖2},

where, ‖·‖ denotes a norm in the relevant Euclidean space. Note first that ϕi is a nonempty

valued correspondence because the maximand is a continuous function and Ai is compact.

Second, note that the function ‖ai − āi‖ is convex:

‖(λai + (1− λ)bi)− āi‖ = ‖(λai − λāi) + ((1− λ)bi − (1− λ)āi)‖

≤ ‖(λai − λāi)‖+ ‖((1− λ)bi − (1− λ)āi)‖

≤ |λ|‖ai − āi‖+ |1− λ|‖bi − āi‖.

Since the quadratic function is strictly convex, then the maximand is a strictly concave

function. Therefore, the correspondence ϕi is in fact a function. Furthermore, since

the maximand is continuous in the parameter ā, ϕi is also continuous. To see this, let

ān → ā be a convergent sequence of action profiles and let ain = ϕi(ān). This means

that U(ain, (ān)−i) ≥ U(bi, (ān)−i) for all bi ∈ Ai. Since Ai is a compact set, ain has a
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convergent subsequence. Denoting by ai the limit of this subsequence and applying limits

to the above inequality, we obtain that

U(ai, ā−i) ≥ U(bi, ā−a) for all bi ∈ Ai,

namely ai = ϕi(ā). Since this is true for every convergent subsequence of ain, we have that

ϕi(ān) = ain → ai = ϕi(ā), which means that ϕ is continuous.

Now define ϕ : A → A by ϕ = (ϕ1, . . . , ϕN). Clearly, ϕ is a continuous function

mapping a compact set to itself. Therefore, by Brouwer’s fixed point theorem, it has a

fixed point: ϕ(ā) = ā. We now show that ā is a Nash equilibrium of the game. Assume

not. Then, there is some i ∈ N with ai ∈ Ai such that Ui(ai, ā−i)− Ui(ā) = E > 0. Then,

by concavity of Ui, for all 0 < ε < 1,

Ui(εai + (1− ε)āi, ā−i)− Ui(ā) ≥ εUi(ai, ā−i) + (1− ε)Ui(ā)− Ui(ā)

≥ εE > 0,

while ‖εai + (1− ε)āi − āi‖2 = ε2‖ai − āi‖2 < εE, for small enough ε. Therefore, for such

small ε, the action εai + (1− ε)āi satisfies

Ui(εai + (1− ε)āi, ā−i)− ‖εai + (1− ε)āi − āi‖2 > Ui(ā)

which contradicts the fact that ϕi(ā) = āi. 2

5 Mixed Strategies

So far, we have formally defined a game, and have introduced the solution concept of Nash

equilibrium which is arguably the central solution concept of game theory. However, there

seem to be two problems with this concept. One is that although Nash equilibria exist in a

wide class of games, there are many simple games that do not have a Nash equilibrium. The

most troubling example is Matching Pennies. If game theory cannot provide a prediction
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for this simple game then one must wonder if there is any value to the theory. The second

problem is that the concept of Nash equilibrium predicts a very unrealistic outcome in the

war of attrition. One would expect that game theory would not only provide nonempty

predictions, but also ones that look reasonable and help explain what we see around us.

One way to approach these problems is not to abandon the theory or the concept of

Nash equilibrium altogether, but to modify the way we model the problematic situations.

The idea behind mixed strategies is to first modify the game by extending the set of actions

available to the players, and then to apply the concept of Nash equilibrium to this extended

game. In this way one may obtain additional Nash equilibria, some of which may provide

reasonable predictions to the game.

Let G = 〈N, (Ai)i∈N , (ui)i∈N〉 be a finite game. For any Ai, a probability distribution

on Ai is a function

xi : Ai → R+

such that ∑
ai∈Ai

xi(ai) = 1.

The set of all probability distributions on Ai is denoted by ∆(Ai). A mixed strategy on Ai is

a random choice over elements of Ai, namely an element of ∆(Ai). If xi is a mixed strategy

on Ai, xi(ai) denotes the probability that action ai ∈ Ai is selected when xi is adopted.

Since elements of ∆(Ai) can have an alternative interpretation, such as beliefs about the

choice of player i, we denote the set of mixed strategies by Xi to distinguish it from the

more abstract set of probability distributions on Ai. Also, we denote the set of mixed

strategy profiles as X = ×i∈NXi. Denoting for each player i ∈ N , X−i = ×k∈N\{i}Xk,

a typical mixed strategy profile can be written as (xk)k∈N = (xi, x−i) ∈ Xi × X−i. The

mixed extension of the strategic game G is the strategic game 〈N, (Xi)i∈N , (Ui)i∈N〉 where

the set of actions of player i is the set of mixed strategies, Xi, and the payoff function
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Ui : ×i∈NXi → R of player i is defined by

Ui((xk)k∈N) =
∑

a=(ak)k∈N∈A

ui(a)Πk∈Nxk(ak)

Remark. Since each mixed strategy of player i, xi, can be identified with a vector

xi = (xi(ai))ai∈Ai
∈ R|Ai|, the function Ui is multinomial in the coordinates of its variables,

and, as a result, it is continuous as a function of the players’ mixed strategies.

Definition 4 An equilibrium in mixed strategies of the game 〈N, (Ai)i∈N , (ui)i∈N〉 is a

Nash equilibrium of the mixed extension of the game. In other words, it is a list of mixed

strategies (x∗k)k∈N ∈ X such that for all players i ∈ N and for all his mixed strategies xi,

Ui((x
∗
k)k∈N) ≥ Ui(

(
xi, x

∗
−i

)
).

Alternatively, (x∗k)k∈N ∈ X is a mixed strategy equilibrium if

x∗i ∈ Bi(x
∗
−i) for all i ∈ N.

Note that for every finite game G = 〈N, (Ai)i∈N , (ui)i∈N〉, its mixed extension is a

strategic game that satisfies the conditions of Theorem 1. As a result, every finite game

has a mixed strategy equilibrium.

Example 1 Consider again Matching Pennies. Its mixed extension is the game

〈N, (Xi)i∈N , (Ui)i∈N〉 where the set of players is N = {1, 2}, the sets of mixed strategies

are X1 = {(pH , pT ) ≥ (0, 0) : pH + pT = 1}, and X2 = {(qH , qT ) ≥ (0, 0) : qH + qT = 1},

and the utility functions are given by U1((pH , pT ) , (qH , qT )) = pHqH + pT qT − pHqT − pT qH

and U2((pH , pT ) , (qH , qT )) = pHqT + pT qH − pHqH − pT qT . It can be checked that the

only Nash equilibrium of this mixed extension is ((1/2, 1/2) , (1/2, 1/2)). Indeed, since

U1((pH , pT ) , (1/2, 1/2)) is identically 0, it attains its maximum at, among other strategies,

(1/2, 1/2). The same is true for U2((1/2, 1/2) , (qH , qT )). To see that there is no other

equilibrium, note that for (qH , qT ) with qH > qT , player 1’s best response is (1, 0). But
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player 2’s best response to (1, 0), is (0, 1). Since 0 ≤ 1, (qH , qT ) with qH > qT cannot be

part of an equilibrium. Similarly, for any (qH , qT ) with qH < qT , player 1’s best response

is (0, 1). But player 2’s best response to (0, 1) is (1, 0). Since 1 ≥ 0, (qH , qT ) with qH < qT

cannot be part of an equilibrium.

We next present a characterization of the mixed strategy equilibria of a game that will

sometimes allow us to compute them in an easy way. Further, this characterization serves

as the basis of an interesting interpretation of the mixed strategy equilibrium concept that

we will discuss later. For this purpose, we identify the action ai ∈ Ai of player i with the

mixed strategy of player i that assigns probability 1 to action ai, and 0 to all other actions.

Therefore, given a player i, one of his actions ai ∈ Ai, and a profile x = (xk)k∈N of the

players’ mixed strategies, (ai, x−i) denotes the mixed strategy profile obtained from x by

replacing i’s mixed strategy xi by the mixed strategy of player i that assigns probability 1

to action ai. With this notation we can state the following identity:

Ui((xk)k∈N) =
∑

ai∈Ai

xi(ai)Ui((ai, x−i)). (1)

Indeed,

Ui((xk)k∈N) =
∑

a=(ak)k∈N∈A

ui(a)Πk∈Nxk(ak)

=
∑

ai∈Ai

∑
a−i∈A−i

ui(a)Πk∈Nxk(ak)

=
∑

ai∈Ai

xi(ai)
∑

a−i∈A−i

ui(a)Πk∈N\{i}xk(ak)

=
∑

ai∈Ai

xi(ai)Ui((ai, x−i)).

Identity (1) is useful to prove the following characterization of the mixed strategy Nash

equilibria.
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Lemma 1 The strategy profile x∗ = (x∗k)k∈N is an equilibrium of the mixed extension of

〈N, (Ai)i∈N , (ui)i∈N〉 if and only if for all players i ∈ N and for all ai ∈ Ai,

If x∗i (ai) > 0 then Ui(
(
ai, x

∗
−i

)
) = Ui(x

∗) (2)

If x∗i (ai) = 0 then Ui(
(
ai, x

∗
−i

)
) ≤ Ui(x

∗). (3)

Proof : Assume that x∗ = (x∗k)k∈N satisfies conditions (2) and (3). Let i ∈ N , and let xi

be a mixed strategy of player i. Then, by (1)

Ui(xi, x
∗
−i) =

∑
ai∈Ai

xi(ai)Ui(
(
ai, x

∗
−i

)
) ≤

∑
ai∈Ai

xi(ai)Ui(x
∗) = Ui(x

∗)

and therefore x∗ is an equilibrium.

Assume now that x∗ = (x∗k)k∈N is an equilibrium. Let i ∈ N . Then

Ui(x
∗) ≥ Ui(

(
ai, x

∗
−i

)
) ∀ai ∈ Ai (4)

and, in particular, condition (3) holds for all ai ∈ Ai such that xi(ai) = 0. Also, using (1)

we can write ∑
ai∈Ai

x∗i (ai)Ui(x
∗) =

∑
ai∈Ai

x∗i (ai)Ui

(
ai, x

∗
−i

)
. (5)

If there is ai ∈ Ai such that xi(ai) > 0 and Ui(x
∗) > Ui

(
ai, x

∗
−i

)
then, using (4),∑

ai∈Ai

x∗i (ai)Ui(x
∗) >

∑
ai∈Ai

x∗i (ai)Ui(
(
ai, x

∗
−i

)
)

in contradiction to (5). 2

Corollary 1 The strategy profile x∗ = (x∗k)k∈N is an equilibrium of the mixed extension

of 〈N, (Ai)i∈N , (ui)i∈N〉 if and only if for all players i ∈ N and for all ai ∈ Ai,

x∗i (ai) > 0 implies ai ∈ Bi(x
∗
−i).
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According to the standard interpretation, a player’s mixed strategy in a game G is an

action, but in a different game, namely in the mixed extension of G. According to this

interpretation, a mixed strategy is a deliberate choice of a player to use a random device. A

mixed strategy equilibrium then is a profile of independent random devices, each of which

is a best response to the others. Corollary 1 provides an alternative interpretation of a

mixed strategy equilibrium. According to this interpretation, a player’s mixed strategy

represents the uncertainty in the minds of the other players concerning the player’s action.

In other words, a player’s mixed strategy is interpreted not as a deliberate choice of the

player but the belief, shared by all the other players, about the player’s choice. That is, if

(xk)k∈N is a profile of mixed strategies, then xi is the conjecture, shared by all the players

other than i, about i’s ultimate choice of action. Consequently, x−i are the conjectures

entertained by player i about his opponents’ actions. According to this interpretation,

Corollary 1 says that a mixed strategy equilibrium (x∗k)k∈N is a profile of beliefs about

each player’s actions (entertained by the other players) according to which each player

chooses an action that is a best response to his own beliefs.

5.1 The War of Attrition (cont.)

We have seen in Section 3.1 that all the Nash equilibria of the war of attrition predict no

real fight for the prey. We will now see that there is a mixed strategy equilibrium of the

war of attrition that predicts a positive-length fight with probability one.

The players’ action sets in the war of attrition are intervals of real numbers. A mixed

strategy for player i in that game can be represented by a cumulative distribution function

Fi : [0,∞] → [0, 1]. For each t ∈ (0,∞], Fi(t) is the probability that player i gives up

at or before t. We will look for a Nash equilibrium (F1, F2) that consists of two strictly

increasing, differentiable cumulative distribution functions. The density of Fi is denoted

by fi. We will try to find an equilibrium at which each player is indifferent between all

pure actions.
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Consider player i. Given that his opponent is using mixed strategy Fj, j 6= i, if he

chooses to give in at time t, then he will face a lottery according to which,

• with probability 1−Fj(t), player i does not obtain the prey and gets a payoff of −t,

• with probability Fj(t), player i obtains the prey at time tj, where tj is a random vari-

able whose cumulative distribution function is Fj(tj)/Fj(t) (the distribution player

j’s surrender time, conditional on his having given in before t).

Therefore, the corresponding expected utility of choosing time t is

Ui(t, Fj) = (1− Fj(t))(−t) + Fj(t)

∫ t

0

(vi − tj)d
Fj(tj)

Fj(t)

= (1− Fj(t))(−t) +

∫ t

0

(vi − tj)dFj(tj).

Since in the equilibrium we are looking for, player i is indifferent among all his actions,

the above expression is independent of t. Namely, Ui(t, Fj) ≡ c. As a result, the derivative

of the above utility with respect to t equals 0. Formally,

∂Ui(t, Fj)

∂t
= tfj(t)− (1− Fj(t)) + (vi − t)fj(t)

= (1− Fj(t)) + vifj(t) = 0.

This is a differential equation whose general solution is

Fj(t) = 1−Ke
− t

vi .

If we want it to satisfy Fj(0) = 0, we obtain that K = 1. As a result, the distribution

function is given by

Fj(t) = 1− e
− t

vi .

Consequently, the equilibrium we are looking for is

(F1(t), F2(t)) = (1− e
− t

v2 , 1− e
− t

v1 ).
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According to this equilibrium, for any t, the probability that there is a fight that lasts at

least t is (1−F1(t))(1−F2(t)) > 0. Consequently, there is a fight with probability one. The

introduction of mixed strategies allowed the concept of Nash equilibrium to be consistent

with fights that last a positive length of time. However, the mixed strategy equilibrium

has the following unfortunate property. If v1 < v2, then for all t > 0, F1(t) < F2(t). In

other words, it is more likely that the player with the highest willingness to fight for the

prey gives up earlier than any given t, than that the player with the lowest willingness

to fight gives in earlier than the same t. Therefore, in equilibrium it is more likely that

the player with the lower willingness to fight wins the war than the other way around. In

particular, the probability that player 1 gets the object is given by∫ ∞

0

F2(t) dF1(t)

which can be checked to be equal to v2

v1+v2
> 1/2. In order to obtain the more intuitive

result that the higher the willingness to fight for the prey, the higher is the probability to

obtain it, we will need to model the war of attrition in yet a different way. We’ll return to

this when we introduce asymmetric information to the games.

6 Equilibrium in Beliefs

The mixed extension of the game 〈N, (Ai)i∈N , (ui)i∈N〉 is constructed in two steps. First,

we enlarge the set of actions available to each player by allowing him to choose any mixed

strategy on his original action set. Second, since the action choices are now probability

distributions over actions, we extend the players’ original preferences to preferences over

profiles of mixed strategies. We do so by evaluating each mixed strategy profile according

to the expected value of the original utilities with respect to the probability distribution

over action profiles induced by the mixed strategy.

The first step seems uncontroversial since it is certainly possible for players to use

random devices. But the second step is somewhat problematic because, by evaluating
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mixed strategies according to the expected utility of the resulting lotteries, one is implicitly

imposing on the players a certain kind of risk preferences. One may wonder what the

implications would be if instead of extending the preferences by assuming that players are

expected utility maximizers, we assume that players have more general preferences over

profiles of mixed strategies. In particular, we would like to know if there is a suitable

generalization of Corollary 1.

Let G = 〈N, (Ai)i∈N , (ui)i∈N〉 be a finite game. We define the mixed extension of G as

the strategic game 〈N, (Xi)i∈N , (Ui)i∈N〉 where, as in Section 5, Xi is the set of probability

distributions over the actions in Ai, for i ∈ N , but unlike there, the utility function

Ui : X → RN is not necessarily a multilinear function of the probabilities, but a general

continuous function of the mixed strategies. The only requirement on Ui is that for all

profiles of degenerate mixed strategies (ak)k∈N , we have Ui

(
(ak)k∈N

)
= ui

(
(ak)k∈N

)
. As

before, a mixed strategy Nash equilibrium of 〈N, (Ai)i∈N , (ui)i∈N〉 is a Nash equilibrium of

its mixed extension 〈N, (Xi)i∈N , (Ui)i∈N〉. In other words, it is a list of mixed strategies

(x∗k)k∈N such that for all players i ∈ N and for all of his mixed strategies xi,

Ui((x
∗
k)k∈N) ≥ Ui(

(
xi, x

∗
−i

)
).

Alternatively, (x∗k)k∈N is a mixed strategy equilibrium if

x∗i ∈ Bi(x
∗
−i) for all i ∈ N.

Observation 1 It is important to note that two different actions of a player may be best

responses to a given mixed strategy profile of the other players, and yet no probability

mixture of the two actions will be a best response to the given mixed strategy profile. This

will typically be the case when the function Ui is strictly convex in Xi, since strictly convex

functions attain their maximum at boundary points.

Theorem 1 shows that Nash equilibria exist when the extended utility function Ui is

concave in Xi. However, Observation 1 indicates that a Nash equilibrium may fail to exist
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when Ui is strictly convex in Xi. Indeed, take a game G = 〈N, (Ai)i∈N , (ui)i∈N〉 with no

pure strategy Nash equilibrium, like Matching Pennies, and consider its mixed extension

Γ = 〈N, (Xi)i∈N , (Ui)i∈N〉 where for all players, their extended utility function is strictly

convex. Then, for any player i ∈ N and for any profile of mixed strategies x−i of the other

players, the set of i’s best responses Bi(x−i) consists of only degenerate mixed strategies.

Since G has no pure strategy Nash equilibrium, we conclude that Γ does not have a Nash

equilibrium.

Observation 2 It is also important to note that, unlike in the standard expected utility

case, a player’s mixed strategy x∗i may very well be a best response to some profile x∗−i of

the other players’ mixed strategies and at the same time may assign positive probability

to an action that (when regarded as a degenerate mixed strategy) is not a best response

to x∗−i. Formally, it may very well be the case that

Ui((x
∗
k)k∈N) ≥ Ui(

(
xi, x

∗
−i

)
) for all xi ∈ Xi

and yet

Ui(
(
ai, x

∗
−i

)
) < Ui((x

∗
k)k∈N) for some ai such x∗i (ai) > 0.

This will typically occur when the function Ui is strictly concave in Xi.

The definition of mixed strategy equilibrium requires from each strategy in the equi-

librium profile that it be a best response to the other strategies. Corollary 1 stated that

when preferences have the expected utility form, each mixed strategy in a mixed strategy

equilibrium is also a probability mixture over best responses to the other strategies in the

profile. This result allowed us to interpret a mixed strategy Nash equilibrium as a profile

of beliefs, rather than as a profile of probability mixtures. As explained in Observation 2,

however, when preferences over mixed strategies are not expected utility preferences, a

mixture over best responses is not necessarily a best response. Therefore, Corollary 1 does

not extend to the mixed extension where preferences are not of the expected utility form.
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In this setup, however, one can still interpret a player’s mixed strategy as a belief

entertained by the other players about the actions chosen by that player. And a profile of

such beliefs will be in equilibrium if the probability distribution over the player’s actions

that represents i’s beliefs is obtained as a mixture of best responses of this player to his

beliefs about the other players’ actions. With this idea in mind, Crawford (1990) defined

the notion of an equilibrium in beliefs. Before we formally present his definition we need

to introduce some notation.

Since when the extended utility functions Ui are concave in i’s own strategy a best

response to a given profile of the other players’ strategies may be a non-degenerate mixed

strategy, a mixture of best responses will typically be a mixture over non-degenerate mixed

strategies. This mixture induces a probability distribution over actions in a natural way by

reducing the compound mixture to a simple mixture. This induced probability distribution

can be interpreted as a belief over the actions ultimately chosen. For example, in Matching

Pennies, if player 1 believes that there is a probability of 1/2 that player 2 will choose the

mixed strategy (1/3, 2/3) and a probability of 1/2 that player 2 will choose the mixed

strategy (2/3, 1/3), then player 1 believes that player 2 will choose each one of his two

actions with equal probability. More generally, if player i assigns probability pk to the event

that player j will choose mixed strategy xk ∈ Xj, for k = 1, . . . K, then player i’s beliefs

about player j’s actions are given by
∑K

k=1 pkx
k ∈ Xj. That is, for each action aj ∈ Aj

of player j, player i believes that player j will choose aj with probability
∑K

k=1 pkx
k(aj).

For each set T ⊂ Xi of mixed strategies, let D[T ] ⊂ Xi denote the set of probability

distributions over i’s actions that are induced by mixtures over elements of T . With this

notation in hand, we can define the concept of equilibrium in beliefs.

Definition 5 Let G = 〈N, (Ai)i∈N , (ui)i∈N〉 be a game. For each i ∈ N , let Bi : X → Xi

be the best response correspondence in the mixed extension of G. The profile of beliefs

(x∗k)k∈N ∈ ×k∈N∆(Ak) is an equilibrium in beliefs if

x∗i ∈ D
[
Bi(x

∗
−i)

]
for all i ∈ N.
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An equilibrium in beliefs is a profile of beliefs (x∗k)k∈N . For each i ∈ N , x∗i is the

common belief of the players other than i about player i’s choice of actions. In order for

this profile of beliefs to be in equilibrium, we require that for each player i ∈ N all the

other players believe that i chooses a mixed strategy that is a best response to his beliefs,

which are given by (x∗k)k∈N\{i}, about the other players’ choices of actions. In other words,

x∗i must be a convex combination of best responses of i to (x∗k)k∈N\{i}.

Example 2 Consider again the mixed extension of Matching Pennies 〈N, (Xi)i∈N , (Ui)i∈N〉

where the set of players is N = {1, 2}, the sets of mixed strategies are X1 =

{(pH , pT ) ≥ (0, 0) : pH + pT = 1} and X2 = {(qH , qT ) ≥ (0, 0) : qH + qT = 1}, and the util-

ity functions are now given by U1((pH , pT ) , (qH , qT )) = (pHqH)2 + (pT qT )2 − pHqT − pT qH

and U2((pH , pT ) , (qH , qT )) = (pHqT )2 + (pT qH)2 − pHqH − pT qT . Since the utility functions

are strictly convex in the players’s own mixed strategies, the best response to any strategy

of the opponent is a pure strategy. In particular, one can verify that

B1(qH , qT ) =


(1, 0) if qH > qT

{(1, 0) , (0, 1)} if qH = qT

(0, 1) if qH < qT

and

B2(pH , pT ) =


(0, 1) if pH > pT

{(1, 0) , (0, 1)} if pH = pT

(1, 0) if pH < pT .

It can also be verified that ((p∗H , p
∗
T ) , (q∗H , q

∗
T )) = ((1/2, 1/2) , (1/2, 1/2)) is an equilibrium

in beliefs. Indeed, for both i = 1, 2, (1/2, 1/2) ∈ Xi is a convex combination of (1, 0) and

(0, 1), which are both in Bj (1/2, 1/2), j 6= i. In this equilibrium,

1. Player 1 believes that player 2 will choose (1, 0) with probability 1/2, and (0, 1) with

probability 1/2.

2. Therefore player 1 believes that player 2 will ultimately choose H and T, each with

probability 1/2.
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3. Given these beliefs, player 1’s only best replies are (1, 0) and (0, 1), and

4. Player 2 believes that player 1 will choose each one with probability 1/2. As a result,

5. Player 2 believes that player 1 will ultimately choose H and T each with probability

1/2.

6. Given these beliefs, player 2’s only best replies are (1, 0) and (0, 1), and

1. Player 1 believes that player 2 will choose (1, 0) with probability 1/2, and (0, 1) with

probability 1/2.

The following result is a direct implication of the definition of an equilibrium in beliefs.

Proposition 2 [Crawford (1990)] Let G = 〈N, (Ai)i∈N , (ui)i∈N〉 be a strategic game, and

Γ = 〈N, (Xi)i∈N , (Ui)i∈N〉 be the mixed extension of G, where Ui is continuous but not

necessarily multilinear.

1. Every mixed strategy Nash equilibrium of G is an equilibrium in beliefs.

2. If for all i ∈ N , Ui is quasiconcave in Xi, then every equilibrium in beliefs is a mixed

strategy Nash equilibrium of G.

Proof :

1. Since Bi(x
∗
−i) ⊂ D

[
Bi(x

∗
−i)

]
for all i ∈ N , every Nash equilibrium is an equilibrium

in beliefs.

2. When the utility function Ui is quasiconcave in i’s mixed strategy, the set of best

responses Bi(x
∗
−i) is a convex set. Therefore, D

[
Bi(x

∗
−i)

]
= Bi(x

∗
−i), and any equi-

librium in beliefs is a Nash equilibrium.
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2

Crawford (1990) shows that although some games have no Nash equilibrium, every

game has an equilibrium in beliefs.

7 Correlated Equilibrium

In the mixed extension of a game, players do not choose their actions directly, but rather

choose probability distributions over their action sets according to which the actions are

ultimately selected. The important feature about these probability distributions is that

they represent independent random variables. The realization of one player’s random

variable does not give any information about the realization of the other players’ random

variables. There is nothing in the bare notion of equilibrium, however, that requires players’

behavior to be independent. The basic feature of an equilibrium is that each player is best

responding to the behavior of others, and that each player is free to choose any action in

his action set. But one thing is that players can, if they so wish, change their behavior

without the consent of others, and another different thing is to expect players’ choices

to be independent. Therefore, one could ask what would happen if the random devices

players use to ultimately choose their actions were correlated. In that case, knowledge

of the realization of one’s random device would provide some partial information about

the realization of the other players’ random devices, and therefore of their choices. In

equilibrium, a player should take this information into account. To illustrate this point,

consider the game of Chicken.

Driver 2

Slow Down Speed up

Driver 1 Slow Down 6, 6 2, 7

Speed up 7, 2 0, 0
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This game has two pure-action Nash equilibria, and one equilibrium in mixed strategies.

According to the mixed strategy Nash equilibrium, each player chooses Slow Down with

probability 2/3 and Speed Up with probability 1/3. This mixed strategy equilibrium can

be implemented by the following random device. Consider two random variables S1 and

S2, whose joint distribution is given by the following table:

S2

1 2

S1
1 4/9 2/9

2 2/9 1/9

Table 1: A random device.

Driver 1 chooses his action as a function of the realization of S1 and Driver 2 chooses his

action as a function of the realization of S2. (Neither player is informed of the realization of

the other player’s random variable.) In particular, Driver 1 chooses Slow Down if S1 = 1

and Speed Up otherwise. Similarly, Driver 2 chooses Slow Down if S2 = 1, and Speed

Up otherwise. Note that according to this pattern of behavior, each player chooses to

slow down with probability 2/3. But more importantly, since S1 and S2 are independent

random variables, knowledge of the realization of one random variable does not give any

information about the realization of the other one. Therefore, after Driver 1 learns the

realization of S1, he still believes that Driver 2 will choose Slow Down with probability 2/3

and consequently any choice is optimal, in particular the one described above. Similarly,

after Driver 2 learns the realization of S2, he still believes that Driver 1 will choose to slow

down with probability 2/3, and his planned behavior continues to be optimal.

But what would happen if the joint distribution of S1 and S2, was not as presented in

Table 1, but rather as follows?
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S2

1 2

S1
1 1/3 1/3

2 1/3 0

To answer this question, assume that both players still choose their actions according to

the previous pattern of behavior: Driver 1 chooses Slow Down if S1 = 1, and Speed Up

otherwise. The same holds for Driver 2. As a result, it is still true that each player chooses

Slow Down with probability 2/3 and Speed Up with probability 1/3. However, since

this time the conditioning random variables S1 and S2 are not independent, knowledge

of the realization of S1 affects the beliefs of Driver 1 about the probability with which

Driver 2 chooses his actions. In particular, if S1 = 1, Driver 1 updates his beliefs and

assigns probability 1/2 to Driver 2 choosing either action, and consequently, Driver 1’s

only optimal action is Slow Down, which is precisely the choice dictated by the above

pattern of behavior. Similarly, if S1 = 2, Driver 1 should update his beliefs and assign

probability one that Driver 2 will choose Slow Down. Consequently, Driver 1’s best reply

is to follow the above pattern of behavior and choose Speed Up. One can see that, given

that the players know that the random variables S1 and S2 are correlated and they use

this information accordingly, there is no incentive for either of them to deviate from the

proposed pattern of behavior. Therefore, we can say that this pattern of behavior is an

equilibrium. This notion of a correlated equilibrium was introduced in Aumann (1974).

Before we give a formal definition we introduce the concept of a correlated strategy profile,

which will play a central role not only in this section, but in the next one as well.

Definition 6 Let G = 〈N, (Ai)i∈N , (ui)i∈N〉 be a game. A correlated strategy profile in G

consists of

• A finite probability space (Ω, π)

• For each player i ∈ N , a partition Pi of Ω into events of positive probability
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• For each player i ∈ N , a function σi : Ω → Ai which is measurable with respect to

Pi.

A correlated strategy profile is a description of what players do and know while playing

the game G. The collection
〈
(Ω, π), (Pi)i∈N

〉
represents the random devices used by the

players to ultimately choose their actions. The underlying probability space that governs

the players’ random devices is (Ω, π). Ω is the set of states, and for each state ω, π(ω)

is the probability that ω occurs. For each i ∈ N , the partition Pi represents player i’s

information. Each element of the partition represents a different realization of the random

device used by i to choose his action. Two states that belong to the same element of the

partition Pi cannot be distinguished by i, while two states that belong to different partition

cells can be distinguished by him. For each player i, σi : Ω → Ai is the random variable

that describes players i’s choice of action, σi(ω) being the action chosen by him at state

ω. The measurability of σi with respect to Pi formalizes the requirement that the actions

chosen by player i depend only on his information about the state of the world. Therefore,

for any two states that belong to the same element of his partition, the actions chosen by i

at those states must be the same. That is, for any ω, ω′ ∈ P ∈ Pi we have σi(ω) = σi(ω
′).

For example, the correlated strategy profile described earlier for the game of chicken

can be formalized as
〈
(Ω, π), (Pi)i∈N , (σi)i∈N

〉
, where N = {I, II}, and

• Ω = {(1, 1), (1, 2), (2, 1))}

• π(ω) = 1/3 for all ω ∈ Ω

• PI = {{(1, 1), (1, 2)}, {(2, 1)}} and PII = {{(1, 1), (2, 1)}}, {(1, 2)}

• σI(ω) =

 Slow Down if ω ∈ {(1, 1), (1, 2)}

Speed up if ω ∈ {(2, 1)}

• σII(ω) =

 Slow Down if ω ∈ {(1, 1), (2, 1)}

Speed up if ω ∈ {(1, 2)}
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According to this correlated strategy profile, there are three equally likely states, and the

players can distinguish only one component of the state, namely the realization of their

random variable. The players’ actions are described by the functions σI and σII which

depend only on the respective player’s information.

In what follows we denote by σ : Ω → A the function that associates with each ω ∈ Ω

the action profile induced by the strategies σk, for k ∈ N . That is, σ = (σk)k∈N . Also,

for any i ∈ N , σ−i = (σk)k∈N\{i} so that σ = (σ−i, σi). We are interested in correlated

strategy profiles in which no player benefits by altering his behavior. These special profiles

are introduced in the following definition.

Definition 7 Let G = 〈N, (Ai)i∈N , (ui)i∈N〉 be a strategic game. A correlated equilibrium

of G is a correlated strategy
〈
(Ω, π), (Pi)i∈N , (σi)i∈N

〉
such that for every i ∈ N and every

function τi : Ω → Ai that is measurable with respect to Pi,∑
ω∈Ω

π(ω)ui(σ−i(ω), σi(ω)) ≥
∑
ω∈Ω

π(ω)ui(σ−i(ω), τi(ω)). (6)

The value vi =
∑
ω∈Ω

π(ω)ui(σ−i(ω), σi(ω)) is player i’s correlated equilibrium payoff.

In a correlated strategy profile each player plans to condition his choice of action on

the realization of a random variable, and the players’ random variables may be correlated.

A correlated strategy profile is a correlated equilibrium if no player can find an alternative

way to condition his choice on the same random device, so that his expected utility is

increased. Note that the player presumably chooses his strategy (his way to condition

his actions on the outcomes of the random device) before he learns the realization of

the device. Nonetheless, he evaluates the outcomes generated by the players’ strategies

by taking into account the precise correlation of the random devices on which outcomes

players are conditioning their behavior.

Although strictly speaking mixed strategy Nash equilibria are not correlated equilibria,

they do induce a correlated equilibrium distribution over action profiles. In order to state

this claim, we need the following definition.
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Definition 8 Let 〈(Ω, π), (Pi, σi)i∈N〉 be a correlated strategy profile for G. Its induced

probability distribution over action profiles is given by the function p : A→ [0, 1] defined

by

p(a) = π({ω ∈ Ω : σ(ω) = a}) =
∑

{ω∈Ω:σ(ω)=a}

π(ω) for all a ∈ A, .

Proposition 3 Let G = 〈N, (Ai)i∈N , (ui)i∈N〉 be a strategic game, and let x = (x1, · · · , xn)

be a mixed strategy Nash equilibrium of G. Then, there is a correlated equilibrium〈
(Ω, π), (Pi)i∈N , (σi)i∈N

〉
whose induced probability distribution over action profiles is the

same as x’s distribution.

Proof : Let
〈
(Ω, π), (Pi)i∈N , (σi)i∈N

〉
be defined as follows:

• Ω = A

• π(a) =
∏
i∈N

xi(ai)

• Pi(a) = {b ∈ A : bi = ai}

• σi(a) = ai

We claim that
〈
(Ω, π), (Pi)i∈N , (σi)i∈N

〉
is a correlated equilibrium whose probability

distribution is the same as x’s distribution. Let i ∈ N . Since x is a mixed strategy Nash

equilibrium, we know by Lemma 1 that for all ai ∈ Ai

if xi(ai) > 0 then Ui(x) = Ui(ai, x−i)

if xi(ai) = 0 then Ui(x) ≥ Ui(ai, x−i).

Consequently, for all ai ∈ Ai

xi(ai)Ui(ai, x−i) ≥ xi(ai)Ui(bi, x−i) for all bi ∈ Ai. (7)
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Now let τi : A → Ai be a function that is measurable with respect to Pi. Let a−i ∈ A−i

be a fixed profile of actions for players other than i. Letting bi = τi(ai, a−i), equation (7)

implies that

xi(ai)Ui(ai, x−i) ≥ xi(ai)Ui(τi(ai, a−i), x−i) for all ai ∈ Ai.

Adding over all ai ∈ Ai,∑
ai∈Ai

xi(ai)Ui(ai, x−i) ≥
∑

ai∈Ai

xi(ai)Ui(τi(ai, a−i), x−i).

Taking into account the definition of Ui(ai, x−i) and Ui(τi(a), x−i), and using the measur-

ability of τi with respect to Pi, we get∑
ai∈Ai

xi(ai)
∑

a−i∈A−i

(
∏

j∈N\{i}

xj(aj))ui(ai, a−i) ≥
∑

ai∈Ai

xi(ai)
∑

a−i∈A−i

(
∏

j∈N\{i}

xj(aj))ui(τi(a), a−i)∑
a∈A

(
∏
j∈N

xj(aj))ui(ai, a−i) ≥
∑
a∈A

(
∏
j∈N

xj(aj))ui(τi(a), a−i)∑
a∈A

π(a)ui(ai, a−i) ≥
∑
a∈A

π(a)ui(τi(a), a−i)∑
a∈A

π(a)ui(σi(a), σ−i(a)) ≥
∑
a∈A

π(a)ui(τ−i(a), σ−i(a)).

This shows that
〈
(Ω, π), (Pi)i∈N , (σi)i∈N

〉
is a correlated equilibrium of G. Its induced

probability distribution over action profiles is

p(a) = π({b ∈ A : σ(b) = a})

= π({b ∈ A : b = a})

= π(a)

=
∏
i∈N

xi(ai).

2

Although a correlated strategy profile consists of a randomizing device used by the

players, it turns out that the only feature of the device that determines whether or not the
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correlated strategy profile constitutes a correlated equilibrium is its induced probability

distribution over the action profiles. This is shown by the next proposition.

Proposition 4 Let G = 〈N, (Ai)i∈N , (ui)i∈N〉 be a finite strategic game. Every correlated

equilibrium probability distribution over action profiles can be obtained in a correlated

equilibrium of G in which

• Ω = A

• Pi(a) = {b ∈ A : bi = ai} .

Proof : Let 〈(Ω′, π′), (P ′
i, σ

′
i)i∈N〉 be a correlated equilibrium ofG. Consider the correlated

strategy profile 〈(Ω, π), (Pi, σi)i∈N〉 defined by

• Ω = A

• π(a) = π′({ω ∈ Ω : σ′(ω) = a}) for each a ∈ A

• Pi(a) = {b ∈ A : bi = ai} for each i ∈ N and for each a ∈ A

• σi(a) = ai for each i ∈ N .

It is clear that this correlated strategy profile induces the required distribution over

action profiles. Indeed,

p(a) = π({ω ∈ Ω : σ(ω) = a})

= π({a′ ∈ A : a′ = a})

= π(a)

= π′({ω ∈ Ω′ : σ′(ω) = a}).

It remains to show that this profile is a correlated equilibrium. Take a function τi : A→ Ai

that is measurable with respect to Pi. Define τ ′i : Ω′ → Ai by τ ′i(ω) = τi(σ
′(ω)) =
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τi(σ
′
−i(ω), σ′i(ω)). The function τ ′i is measurable with respect to P ′

i. Indeed, if ω′ ∈ P ′
i(ω),

then σ′i(ω
′) = σ′i(ω) by measurability of σ′i with respect to P ′

i. Therefore, by definition of Pi,

Pi(σ
′(ω′)) = Pi(σ

′(ω)), and both σ′i(ω
′) and σ′i(ω) belong to the same element of Pi. Since τi

is measurable with respect to Pi, we conclude that τ ′i(ω
′) = τi(σ

′
i(ω

′)) = τi(σ
′
i(ω)) = τ ′i(ω).

Also, ∑
ω∈Ω

π(ω)ui(σ−i(ω), τi(ω)) =
∑
a∈A

π(a)ui(a−i, τi(a))

=
∑
a∈A

∑
{ω∈Ω′:σ′(ω)=a}

π′(ω)ui(σ
′
−i(ω), τi(σ

′(ω)))

=
∑
a∈A

∑
{ω∈Ω′:σ′(ω)=a}

π′(ω)ui(σ
′
−i(ω), τ ′i(ω))

=
∑
ω∈Ω′

π′(ω)ui(σ
′
−i(ω), τ ′i(ω)).

In particular, for τi = σi,∑
ω∈Ω

π(ω)ui(σ−i(ω), σi(ω)) =
∑
ω∈Ω′

π′(ω)ui(σ
′
−i(ω), σ′i(ω)).

Since 〈(Ω′, π′), (P ′
i, σ

′
i)i∈N〉 is a correlated equilibrium,∑

ω∈Ω′

π′(ω)ui(σ
′
−i(ω), σ′i(ω)) ≥

∑
ω∈Ω′

π′(ω)ui(σ
′
−i(ω), τ ′i(ω))

and therefore ∑
ω∈Ω

π(ω)ui(σ−i(ω), σi(ω)) ≥
∑
ω∈Ω

π(ω)ui(σ−i(ω), τi(ω)).

2

8 Rationality, Correlated Equilibrium and Equilib-

rium in Beliefs

As mentioned earlier, Nash equilibrium and correlated equilibrium are two examples of

what is known as solution concepts. Solution concepts assign to each game a pattern of
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behavior for the players in the game. The interpretation of these patterns of behavior is not

always explicit, but it is fair to say that they are usually interpreted either as descriptions

of what rational people do, or as prescriptions of what rational people should do. There

is a growing literature that tries to connect various game theoretic solution concepts to

the idea of rationality. Rationality is generally understood as the characteristic of a player

who chooses an action that maximizes his preferences, given his information about the

environment in which he acts. Part of the information a player has is represented by his

beliefs about the behavior of other players, their beliefs about the behavior of other players,

and so on. So when one speaks of the rationality of players, one needs to take into account

their epistemic state. There is a formal framework which is appropriate for discussing

the actions, knowledge, beliefs and rationality of players. Namely, the framework of a

correlated strategy profile. As defined in Section 7, a correlated strategy profile in a game

G consists of

• A finite probability space (Ω, π)

• For each player i ∈ N a partition Pi of Ω into events of positive probability

• For each player i ∈ N a function σi : Ω → Ai which is measurable with respect to

Pi.

For the present discussion we interpret a correlated strategy profile
〈
(Ω, π), (Pi)i∈N , (σi)i∈N

〉
as a description of the players’ behavior and beliefs, as observed by an outside observer.

The set Ω is the set of possible states of the world and π is the prior probability on Ω

shared by all the players. For each player i ∈ N , Pi is a partition of Ω that represents i’s

information. At state ω ∈ Ω, player i is informed not of the state that actually occurred,

but of the element Pi(ω) of his partition that contains ω. Player i then uses this informa-

tion and his prior π to update his beliefs about the true state of the world. Finally, the

function σi represents the actions taken by player i at each state. In particular, σi(ω) is

the action chosen by i at state ω. Although a correlated equilibrium can be interpreted
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as a correlated strategy profile prescribed by a given solution concept (that of a correlated

equilibrium), here we want to interpret a correlated strategy profile as a description of

what players actually do and believe. Although players cannot freely choose their beliefs

(in the same way as they cannot choose their preferences), they can choose their actions.

Furthermore, they have no obligation to behave according to the specified correlated strat-

egy profile. However, ultimately players do behave in a certain way and that behavior is

what is represented by the given correlated strategy profile.

Once we fix a correlated strategy profile we can address the rationality of the players.

Formally,

Definition 9 Player i ∈ N is Bayes rational at ω ∈ Ω if his expected payoff at ω,

E(ui(σ)|Pi)(ω), is at least as large as the amount E(ui(σ−i, ai)|Pi)(ω) that he would have

got had he chosen action ai ∈ Ai instead of σi(ω).

In other words, player i is rational at a given state of the world if the action σi(ω) he

chooses at that state maximizes his expected utility given his information, Pi(ω), and, in

particular, given his beliefs about the actions of the other players.

As before, for any finite set T , let ∆(T ) be the set of all probability distributions on

T . The beliefs of player i about the actions of the other players are represented by his

conjectures. A conjecture of i is a probability distribution ψi ∈ ∆ (A−i) over the elements

of A−i. For any j 6= i, the marginal of ψi on Aj is the conjecture of i about j induced

by ψi. Given a correlated strategy profile
〈
(Ω, π), (Pi)i∈N , (σi)i∈N

〉
, one can determine the

conjectures that each player is entertaining at each state of the world about the actions of

the other players. These conjectures are given by the following definition.

Definition 10 Given a correlated strategy profile 〈(Ω, π), (Pi, σi)i∈N〉, the conjectures of

i ∈ N about the other players’ actions are given by the function φi : Ω → ∆(A−i) defined

by

φi(ω)(a−i) =
π [{ω′ ∈ Pi(ω) : σ−i(ω

′) = a−i}]
π [Pi(ω)]

.
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For each ω, φi(ω) ∈ ∆(A−i) is the conjecture of i at ω. For j 6= i, the marginal of φi (ω)

on Aj is the conjecture of i at ω about j’s actions.

Given a correlated strategy profile, we can speak about what each player knows. The

object of knowledge are called events, which are the subsets of the set of states of the world

Ω. We say that player i knows event E ⊂ Ω at state ω, if Pi(ω) ⊂ E. That is, i knows E

at ω if whatever state he deems possible at ω is in E.

The next result, proved by Aumann and Brandenburger (1995), shows a remarkable

relationship between the rationality of players and the concept of equilibrium in beliefs.

Theorem 2 Fix a two-person game, G = 〈N, (Ai)i∈N , (ui)i∈N〉, and let
〈
(Ω, π), (Pi)i∈N , (σi)i∈N

〉
be a correlated strategy profile for G. Let ψ1 ∈ ∆(A1) and ψ2 ∈ ∆(A2) be two conjectures,

one about player 1’s actions and the other about player 2’s actions. Assume that at some

state ω ∈ Ω each player knows that the other is rational and that their conjectures at ω

are (φ1(ω), φ2(ω)) = (ψ2, ψ1). Then, (ψ1, ψ2) is an equilibrium in beliefs.

Proof : The fact that player i knows at ω that j’s conjecture is ψi means that

Pi(ω) ⊂ {ω′ ∈ Ω : φj(ω
′)(ai) = ψi(ai) for all ai ∈ Ai} .

Therefore

φj(ω)(ai) = ψi(ai) for all ai ∈ Ai. (8)

Given Proposition 2 and Corollary 1, we need to show that if ψi(a
∗
i ) > 0, a∗i is a best

response to ψj, for i, j = 1, 2, i 6= j. For this purpose, assume that ψi(a
∗
i ) > 0 for some

a∗i ∈ Ai. Then, by definition of φj and (8), φj(ω)(a∗i ) = π [{ω′ ∈ Pj(ω) : σi(ω
′) = a∗i }] > 0.

Consequently, there is ω′ ∈ Pj(ω) such that σi(ω
′) = a∗i . Since player j knows at ω that

player i is rational,

ω′ ∈ Pj(ω) ⊂ {ω′′ ∈ Ω : E [ui(σ)|Pi] (ω
′′) ≥ E [ui(σ−i, ai)|Pi] (ω

′′) for all ai ∈ Ai} .
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Therefore,

E [ui(σ)|Pi] (ω
′) ≥ E [ui(σ−i, ai)|Pi] (ω

′) for all ai ∈ Ai

and since σi : Ω → Ai is measurable with respect to Pi, σi(ω
′) = a∗i is the action that

player i chooses at all states in Pi(ω
′). Then we can write

E [ui(σ−i, a
∗
i )|Pi] (ω

′) ≥ E [ui(σ−i, ai)|Pi] (ω
′) for all ai ∈ Ai.

That is, for all ai ∈ Ai∑
ω′′∈Pi(ω′)

π(ω′′)

π(Pi(ω′))
ui(σ−i(ω

′′), a∗i ) ≥
∑

ω′′∈Pi(ω′)

π(ω′′)

π(Pi(ω′))
ui(σ−i(ω

′′), ai)

∑
aj∈Aj

∑
ω′′∈Pi(ω

′)
σj(ω′′)=aj

π(ω′′)

π(Pi(ω′))
ui(aj, a

∗
i ) ≥

∑
aj∈Aj

∑
ω′′∈Pi(ω

′)
σj(ω′′)=aj

π(ω′′)

π(Pi(ω′))
ui(aj, ai)

∑
aj∈Aj

π [{ω′′ ∈ Pi(ω
′) : σj(ω

′′) = aj}]
π(Pi(ω′))

ui(aj, a
∗
i ) ≥

∑
aj∈Aj

π [{ω′′ ∈ Pi(ω
′) : σj(ω

′′) = aj}]
π(Pi(ω′))

ui(aj, ai)∑
aj∈Aj

φi(ω
′)(aj)ui(aj, a

∗
i ) ≥

∑
aj∈Aj

φi(ω
′)(aj)ui(aj, ai). (9)

Since ω′ ∈ Pj(ω) and player j knows at ω that i’s conjecture is ψj, then

ω′ ∈ Pj(ω) ⊂ {ω′′ ∈ Ω : φi(ω
′′)(aj) = ψj(aj) for all aj ∈ Aj} .

Therefore φi(ω
′)(aj) = ψj(aj) for all aj ∈ Aj, or φi(ω

′) = ψj. That is, i’s conjecture at ω′

about j’s actions is ψj. Consequently, substituting in (9),∑
aj∈Aj

ψj(aj)ui(aj, a
∗
i ) ≥

∑
aj∈Aj

ψj(aj)ui(aj, ai) ∀ai ∈ Ai.

That is, a∗i is a best response to player i’s beliefs about j’s actions. 2

The only assumptions required by Theorem 2 is that players know they are rational,

and that they know each other’s conjectures. In a correlated strategy profile for a two-

player game, there is only one player entertaining a conjecture about the actions of player
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1, namely, player 2. Similarly, player 1 is the only one who entertains a conjecture about

the actions of player 2. In an n-person game, with n > 2, for each player, there is

more than one player entertaining a conjecture about his actions. Therefore, since an

equilibrium in beliefs consists of a profile of beliefs, each of which is shared by n − 1

players, a generalization of Theorem 2 would require the players’ beliefs about player

i’s actions, for i ∈ N , to be identical. In order to obtain these common beliefs it is not

sufficient to assume that players know each other’s conjectures. One need to strengthen this

assumption. Also, in an equilibrium in beliefs, the common belief about player i’s actions

assigns positive probability only to best responses to i’s conjectures about the choices of the

other players. Furthermore, i’s conjectures about the other players’ choices is the product

of his beliefs about each of the other players. In other words, an equilibrium in beliefs

implicitly assumes that players believe that the other players’ choices are independent.

Aumann and Brandenburger (1995) show that one way to obtain common conjectures

and, simultaneously, that players believe that the other players act independently, is to

assume that players’ conjectures are commonly known. This surprising and deep result is

stated in the next theorem.

Theorem 3 LetG = 〈N, (Ai)i∈N , (ui)i∈N〉 be a strategic game, and let
〈
(Ω, π), (Pi)i∈N , (σi)i∈N

〉
be a correlated strategy profile for G. Also let (ψi)i∈N ∈ ×i∈N∆(A−i) be a profile of con-

jectures, one for each player. Assume that at some state ω ∈ Ω each player knows that

the others are rational. Further, assume that at ω their conjectures are commonly known

to be (ψi)i∈N . Then, for each j, all the conjectures ψi of players i other than j, induce the

same belief ϕj ∈ ∆(Aj) about j’s actions, and the resulting profile of beliefs, (ϕi)i∈N , is

an equilibrium in beliefs.
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8.1 Rationality and Correlated Equilibrium

The previous result shows a surprising relationship between the players’ rationality and

the concept of equilibrium in beliefs. If at some state of the world players know that

everybody is rational, and if their conjectures are commonly known at that state, then

their beliefs about each player’s actions are in equilibrium. It is not that their actions

constitute an equilibrium, but that their beliefs do. The question that naturally arises

is: are there any epistemic conditions on the players that would induce them to play

according to equilibrium? To answer this we turn to Aumann (1987), where it is stated

that if players are rational at every state, then their behavior constitutes a correlated

equilibrium. Therefore, in order to obtain an equilibrium behavior, a sufficient condition

is not that players be rational, or that they know that they are rational at some particular

state, but that their rationality be common knowledge. And if it is common knowledge

that all players are rational, then their behavior is not necessarily a Nash equilibrium, but

a correlated equilibrium.

Theorem 4 Let G be a strategic game, and let
〈
(Ω, π), (Pi)i∈N , (σi)i∈N

〉
be a corre-

lated strategy profile for G. If each player is rational at each state of the world, then〈
(Ω, π), (Pi)i∈N , (σi)i∈N

〉
is a correlated equilibrium.

Proof : Let τi : Ω → Ai be a function that is measurable with respect to Pi. Since i is

Bayes rational at ω

E(ui(σ)|Pi)(ω) ≥ E(ui(σ−i, ai)|Pi)(ω) ∀ai ∈ Ai.

That is,∑
ω′∈Pi(ω)

π(ω′)

π(Pi(ω))
ui(σ−i(ω

′), σi(ω
′)) ≥

∑
ω′∈Pi(ω)

π(ω′)

π(Pi(ω))
ui(σ−i(ω

′), ai) ∀ai ∈ Ai.

In particular, for ai = τ(ω) = τ(ω′) for all ω′ ∈ Pi(ω),∑
ω′∈Pi(ω)

π(ω′)

π(Pi(ω))
ui(σ−i(ω

′), σi(ω
′)) ≥

∑
ω′∈Pi(ω)

π(ω′)

π(Pi(ω))
ui(σ−i(ω

′), τ(ω′)).
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Multiplying both sides by π(ω) and adding over all the elements of Pi we get∑
ω∈Ω

π(ω)ui(σ−i(ω), σi(ω)) ≥
∑
ω∈Ω

π(ω)ui(σ−i(ω), τ(ω)).

2

9 Bayesian Games

Thus far, we have considered static games, which are objects of the form 〈N, (Ai)i∈N , (ui)i∈N〉.

Although these games have many applications, they are not readily suitable for the analysis

of situations involving asymmetric information. Indeed, an implicit assumption behind the

definition of a static game is that all players have the same information about the relevant

aspects of the situation. In particular, all players have the same information about the sets

of actions and preferences of all players. A static game seems suitable to model strategic

interactions like the prisoner’s dilemma, rock scissors paper, and even chess. At the time

they choose their actions, all the players have exactly the same information. There might

be what is called strategic uncertainty, namely, uncertainty about what the players will

do, but there is no uncertainty about the rules of the game and about the preferences of

the players. But how would one translate a game of cards like bridge or poker into a static

game? In a game of cards, at the time of choosing his actions, each player knows the cards

he holds in his hand, but does not know the cards of his opponents. He only has a belief

about the cards held by his opponents. In order to make a sound choice, a player will try

to predict the actions of his opponents, but for this it is crucial to use his beliefs about

the cards they hold. For the same reason, his opponents should use their beliefs about

their own opponents’ cards in order to make a sound choice. Thus, the beliefs about the

cards held by each player should be part of a description of a game with asymmetric infor-

mation. Further, in order to predict his opponents’ actions, a player also needs to assess

his opponents’ beliefs about his own cards. This seems to induce an intractable infinite
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regress of beliefs, and beliefs about beliefs. Harsanyi (1967) provided the basic structure

to describe and analyze strategic situations where players are asymmetrically informed.

This structure is called a Bayesian game.

Definition 11 A Bayesian Game is a system 〈N, (Ω, µ), (Ai,Pi, ui)i∈N〉 where

• N is the set of players

• Ω is the set of states of nature

• µ is the players’ common prior belief (a probability measure over the set of states)

• Ai is player i’s set of actions

• Pi is player i’s information partition (a partition of Ω into sets of positive measure).

Each element of the partition is referred to as a player’s type.

• ui : ×i∈NAi × Ω is player i’s Bernoulli utility function (a function over pairs (a, ω)

where a ∈ A and ω ∈ Ω, the expected value of which represents the player’s prefer-

ences among lotteries over the set of such pairs).

The interpretation of a Bayesian game is as follows. The basic uncertainty is represented

by the probability space (Ω, µ) of all states of nature and the prior probability over them.

Each state represents a realization of all the parametric uncertainty of the model. For

instance, in a game of cards, each state represents each of the possible card deals. The

information of player i ∈ N is represented by his information partition Pi. While states in

the same element of the partition cannot be distinguished by the player, he can distinguish

between states that belong to different partition cells. In a game of cards, for instance,

each partition cell represents a particular set of cards dealt to the player. The probability

measure µ represents the players’ prior belief about the state of nature. This prior belief

will be used along with the information obtained by each player to form beliefs about the
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other players’ information. The set of actions of player i is Ai. Note that there is no loss

of generality in assuming that this set does not depend on the state of nature. One can

always add unavailable actions and assign them intolerable disutility. Finally, ui is the

payoff function that associates to each state of nature and action profile a utility level.

Note that since the state of the world is unknown to the player at the time of making

his choice, a player faces a lottery for any given action profile. The assumption is that

the player evaluates this lottery according to the expected value of ui with respect to that

lottery.

Let 〈N, (Ω, µ), (Ai,Pi, ui)i∈N〉 be a Bayesian game. A strategy for player i ∈ N is

a function σi : Ω → Ai that is measurable with respect to Pi. We denote the set of

strategies for player i by Bi. That is, Bi = {σi : Ω → Ai : σi is measurable w.r.t. Pi}. The

interpretation of a strategy in a Bayesian game is the usual one. For each state of nature

ω ∈ Ω, σi(ω) is the action chosen by player i at ω. The measurability requirement imposes

that player i’s actions depend only on his information. If player i cannot distinguish

between two states of nature, then he must choose the same action at both states. Player

i evaluates a profile σ : Ω → A of strategies according to the expected value of ui with

respect to µ.

In order to define an equilibrium notion for Bayesian games we follow the same idea

used for the definition of a mixed strategy equilibrium. Namely, we translate the Bayesian

game into a standard game, and then define an equilibrium of the Bayesian game as the

Nash equilibirum of the induced game.

Definition 12 A Bayesian equilibrium of a Bayesian game 〈N, (Ω, µ), (Ai,Pi, ui)i∈N〉 is

a Nash equilibrium of the strategic game: 〈N, (Bi)i∈N , (Ui)i∈N〉 where for each profile

σ : Ω → A of strategies, Ui(σ) = Eµ[ui(σ(ω), ω)] is i’s expected utility with respect to µ.

A Bayesian equilibrium of a Bayesian game is a Nash equilibrium of a properly defined

static game. As such, conditions for its existence can be derived from Theorem 1. However,
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in many situations one is interested in particular kinds of equilibria. Specifically, in the

analysis of auctions or of the war of attrition, one is often interested in efficient outcomes.

In a single object auction, efficient outcomes are characterized by the fact that in equilib-

rium the object is allocated to the buyer who values it most. According to many standard

auction rules, the object goes to the highest bidder. Therefore, in such auctions, to guar-

antee an efficient outcome, one would need a monotone equilibrium, namely, one in which

bidders bids are higher the higher their valuations for the object are. Athey (2001) shows

conditions under which a Bayesian equilibrium exists where strategies are non-decreasing.

The crucial conditions are that the players’ types can be represented by a one-dimensional

variable, and that, fixing a nondecreasing strategy for each of a player’s opponents, this

player’s expected payoffs satisfies a single-crossing property. This single-crossing property

roughly says that if a high action is preferred to a low action for a given type t, then the

same must be true for all types higher than t. McAdams (2003) extended Athey’s result

to the case where types and actions are multidimensional and partially ordered.

9.1 The asymmetric information version of the war of attrition

We have seen that, when applied to the war of attrition, as modeled by a standard strategic

game or by its mixed extension, the notion of Nash equilibrium does not yield a satisfactory

prediction.1 In the former case all the equilibria involve no fight, and in the latter case

the equilibrium dictates a more aggressive behavior to the player who values the contested

object less. In what follows, we analyze the war of attrition as a Bayesian game. That

is, we assume that the players are ex-ante symmetric but they have private information

about their value for the contested object.

A Bayesian game that represents the war of attrition is given by 〈N,Ω, (Ai, µi,Pi, ui)i∈N〉

where

1The war of attrition was analyzed in Maynard Smith (1974). For an analysis of the asymmetric

information version of the war of attrition, see Krishna and Morgan (1997).
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• N = {1, 2}

• Ω = [0,∞)2 = {(v1, v2) : 0 ≤ vi <∞, i = 1, 2}

• Ai = [0,∞) for i = 1, 2

• Pi(v̂1, v̂2) = {(v1, v2) ∈ Ω : vi = v̂i} for i = 1, 2

• µ((v1, v2) ≤ (v̂1, v̂2)) = F (v̂1)× F (v̂2)

• ui((a1, a2), (v1, v2)) =

 −ai if ai ≤ aj

vi − aj if ai > aj

Here the set of types of player i, for i = 1, 2, is represented by the player’s willingness

to fight, vi. The players’ willingness to fight are drawn independently from the same

distribution F . A state of the world is, therefore, a realization (v1, v2) of the players’

types, and at that state, each player is informed only of his type. Finally, the utility of

a player is his valuation for the prey, if he obtains it, net of the time spent fighting for

it. We are interested in a symmetric equilibrium in which both players use a symmetric,

strictly increasing strategy β : [0,∞) → [0,∞), where β(v) is the time at which a player

with willingness to fight v is dictated by the equilibrium to give up. Such an equilibrium

would imply that types who value the prey more, are willing to fight more. Further, the

probability of observing a fight in equilibrium would not be 0 (in fact, it would be 1.)

It turns out that a symmetric equilibrium strategy is given by

β(v) =

∫ v

0

xf(x)

1− F (x)
dx,

where f denotes the derivative of F . To see this, assume that player j behaves according

to β and that player i chooses to give up at t. Letting z be the type such β(z) = t, the

expected utility of player i from choosing t is

U(vi, z) =

∫ z

0

(vi − β(y))f(y)dy − β(z)(1− F (z)).
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Taking derivatives with respect to z, and using the fact that β′(z) = zf(z)/[1− F (z)] we

obtain

∂U

∂z
(vi, z) = vif(z)− β′(z)(1− F (z))

= (vi − z)f(z),

which is positive for z < vi, and negative for z > vi. As a result, the expected utility of

player i with willingness to pay vi is maximized at z = vi, which implies that the optimal

choice is β(vi).

Thus, modeling the war of attrition as an asymmetric game has allowed us to find an

equilibrium in which players with higher willingness to fight fight more, and there is a

non-negligible probability of observing a fight.

10 Evolutionary Stable Strategies

The notion of the Nash equilibrium concept involves players choosing actions that maximize

their payoffs given the choices of the other players. The usual interpretation of a Nash

equilibrium is as a pattern of behavior that rational players should adopt. However, Nash

equilibria are sometimes interpreted more descriptively as patterns of behavior that rational

players do adopt. Certainly, rationality of players is neither a necessary condition nor a

sufficient one for players to play a Nash equilibrium. The relationship between rationality

and the various solution concepts is not apparent and has been the focus of an extensive

literature (see, for example, Aumann and Brandenburger (1995), Aumann (1995) Aumann

(1987), Brandenburger and Dekel (1987)). Nonetheless, the notion of a Nash equilibrium

evokes the idea of players consciously making choices with the deliberate objective of

maximizing their payoffs. It is therefore quite remarkable that a concept almost identical

to that of Nash equilibrium has emerged from the biology literature. This concept describes

a population equilibrium where unconscious organisms are programmed to choose actions

with no deliberate aim. In this equilibrium, members of the population meet at random
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over and over again to interact. At each interaction, these players act in a pre-programmed

way and the result of their actions is a gain in biological fitness. Fitness is a concept

related to the reproductive value or survival capacity of an organism. In a temporary

equilibrium, the fitness gains are such that the proportions of individuals that choose each

one of the possible actions remain constant. However, this temporary equilibrium may

be disturbed by the appearance of a mutation, which is a new kind of behavior. This

mutation may upset the temporary equilibrium if its fitness gains are such that the new

behavior spreads over the population. Alternatively, if the fitness gains of the original

population outweigh those of the mutation, then the new behavior will fail to propagate

and will eventually disappear. In a population equilibrium, the interaction of any mutant

with the whole population awards the mutant insufficient fitness gains, and as a result

the mutants disappear. The notion of a population equilibrium is formalized by means of

the concept of an evolutionary stable strategy, introduced by Maynard Smith and Price

(1973).

In what follows we restrict our attention to symmetric two-player games. So let

G = 〈{1, 2} , {A1, A2} , {u1, u2}〉 be a game such that A1 = A2 = A, and such that for

all a, b ∈ A, u1(a, b) = u2(b, a). An evolutionary stable strategy is an action in A such that

if all members of the population were to choose that action, no sufficiently small propor-

tion of mutants choosing an alternative action would succeed in invading the population.

Alternatively, an evolutionary stable strategy is an action in A such that if all the members

of the population were to choose that action, the population would reject all sufficiently

small mutations involving a different action.

More specifically, suppose that all members of the population are programmed to choose

a ∈ A, and then a proportion ε of the population mutates and adopts action b ∈ A. In that

case, the probability that a given member of the population meets a mutant is ε, while

the probability of meeting a member that plays a is 1 − ε. Therefore, the mutation will

not propagate and will vanish if the expected payoff of a mutant is less than the expected

payoff of a member of the majority. Otherwise it will propagate. This leads to the following
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definition.

Definition 13 An action a ∈ A is an evolutionary stable strategy of G if there is an

ε̄ ∈ (0, 1) such that for all ε ∈ (0, ε̄), and for all b ∈ A

(1− ε)u1(a, a) + εu1(a, b) > (1− ε)u1(b, a) + εu1(b, b). (10)

The following result shows that the concept of an evolutionary stable strategy is very

close to the notion of a Nash equilibrium.

Proposition 5 If a ∈ A is an evolutionary stable strategy of G, then (a, a) is a Nash

equilibrium. And if (a, a) is a strict Nash equilibrium then a is an evolutionary stable

strategy.

Proof : If u1 (a, a) > u1 (b, a) for all b ∈ A \ {b}, then inequality (10) holds for all

sufficiently small ε > 0. If u1 (b, a) > u1 (a, a) for some b ∈ A, the reverse inequality holds

for all sufficiently small ε. 2

11 Future Directions

Static games have been shown to be a useful framework for analyzing and understanding

many situations that involve strategic interaction. At present, a large body of literature is

available that develops various solution concepts, some of which are refinements of Nash

equilibrium and some of which are coarsenings of it. Nonetheless, several areas for future

research remain. One is the application of the theory to particular games to better under-

stand the situations they model, for example auctions. In many markets trade is conducted

by auctions of one kind or another, including markets for small domestic products as well

as some centralized electricity markets where generators and distributors buy and sell elec-

tric power on a daily basis. Also, auctions are used to allocate large amounts of valuable
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spectrum among telecommunication companies. It would be interesting to calculate the

equilibria of many real life auctions. Simultaneously, future research should also focus on

the design of auctions whose equilibria have certain desirable properties.

Another future direction would be to empirically and experimentally test the theory.

The various equilibrium concepts predict certain kinds of behavior in certain games. Our

confidence in the predictive and explanatory power of the theory depends on its perfor-

mance in the field and in the laboratory. Moreover, the experimental and empirical results

should provide valuable feedback for further development of the theory. Although some

valuable experimental and empirical tests have already been performed (see McKelvey and

Palfrey (1992), O’Neill (1987), Walker and Wooders (2001), and Palacios-Huerta (2003)

to name a few), the empirical aspect of game theory in general, and of static games in

particular, remains underdeveloped.
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Figure 1: Player 1's best response correspondence 
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Figure 2: The equilibria  
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