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Measuring Segregation

Abstract

We propose a set of axioms for the measurement of multigroup school
segregation. They are motivated by two criteria: do ethnic groups have similar
distributions across schools? And are schools ethnically representative of their
district? Our axioms are satisfied by a unique ordering. It is represented by
the Mutual Information index. This index, originally proposed by Henri Theil,
has a more intuitive decomposition than other indices. As an application, we
find that segregation between districts within cities accounts for 33% of school
segregation. Segregation across states, driven mainly by the distinct residential

patterns of Hispanics, contributes another 32%.
JEL Classification Numbers: C43, C81, D63.

Keywords: Segregation, indices, measurement, peer effects, schools, educa-

tion.

1 Introduction

Segregation is a pervasive social issue. The segregation of men and women into different
occupations helps explain the gender gap in earnings.! Racial segregation in schools is
thought to contribute to low educational achievement among minorities.” Residential seg-
regation has been blamed for black poverty, high black mortality, and increases in prejudice

among whites.® In other contexts, segregation is viewed more positively. The formation

ISee Cotter et al [13], Lewis [32], and Macpherson and Hirsh [34].
ZRecent studies include Boozer, Krueger, and Wolkon [3] and Hanushek, Kain, and Rivkin [22].

3See Cutler and Glaeser [15], Collins and Williams [11], and Kinder and Mendelberg [31], respectively.
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of homogeneous living areas has been discussed as a solution to highly polarized conflicts
in the Middle East, Yugoslavia, and elsewhere.

In this paper we focus on contexts in which geography is unimportant. In some cases,
such as residential neighborhoods, this might be a strong assumption. In others, it is
more innocuous. For instance, the presence of other schools near a given student’s school
typically does not have a great effect on the student’s educational outcomes. Hence, our
presentation will focus on school segregation.

Segregation, like inequality, is a complex concept. The literature on segregation mea-
surement has generated over 20 different indices.* Hence, it is useful to go back to basic
principles: to look for simple and compelling axioms and see what their implications are.
By characterizing segregation indices in terms of their basic properties, axiomatizations
help researchers compare and choose between measures.

While some papers have analyzed the properties of various indices, very few of them
have provided a full axiomatization. Those that have done so treat only the two-group
case. Existing axiomatizations also rely in part on cardinal axioms—for instance, that the
index be additively separable across schools. While such properties are convenient, their
implications for how an index ranks pairs of districts are often unclear. Our axiomatization
relies solely on ordinal axioms: rules that an index must follow in ranking districts.

Formally, we define a segregation ordering as a complete ordering on school districts:
a ranking of districts from most segregated to least segregated. We propose a set of axioms
that restrict this ranking in various ways. We then prove that there is a unique ordering
that satisfies our axioms. It is represented by a simple index, which we call the “Mutual
Information” index. While this index turns out to be additively separable—indeed, in a
more intuitive way than other indices—this is a consequence of our axioms rather than an
assumption.

The Mutual Information index is defined as follows. Consider a discrete random vari-

able z that takes K possible values. Let p; be the probability of the kth value of x. For

4Surveys include Massey and Denton [35], Fliickiger and Silber [18], and Reardon and Firebaugh [43].



instance, if x is the ethnic group of a randomly selected student, then py, is the proportion
of district students who are in the kth group. The entropy of x is a measure of the uncer-
tainty in 2.° It is defined as Zszl pr log,y <pik> Now suppose that we do not know the
student’s race. We are told only which school, y, she attends. If the schools in the district
are segregated, this will convey some information about her race. The mutual information
between x and y is a measure of how much we learn. It is defined as the expected reduc-
tion in the entropy of the student’s race that results from learning her school. In particular,
once a student’s school is known, the entropy of = will be based on the ethnic distribution
within that school. The expected entropy of the student’s race once her school is known is

defined as the population-weighted average of these within-school entropies. The mutual

information between x and vy is thus defined as

Proportion of Entropy of
Entropy of district
M = - Z district students school n’s
ethnic distribution schools 1.
in district in school n ethnic distribution

We call this the Mutual Information index of segregation in the district: the reduction
in uncertainty about a student’s race that comes from learning which school she attends.
Mutual information is a symmetric concept: either variable leads to the same reduction
in uncertainty about the other (Cover and Thomas [14, pp. 18 ff.]). Hence, the Mutual
Information index also equals the reduction in uncertainty about a student’s school that
comes from learning her race.

The Mutual Information index was first proposed by Theil [50] and was applied by
Fuchs [21] and Mora and Ruiz-Castillo [36, 39] to study gender segregation in the labor
force.® 1t is related to the more widely used Entropy index H (Theil [51]; Theil and

Finizza [52]), which equals the ratio of the Mutual Information index to the entropy of the

3The entropy of z is, among other things, an upper bound on the average number of bits needed to encode

a series of i.i.d. realizations of x. See Cover and Thomas [14] for this and other interpretations.

®See also Herranz, Mora, and Ruiz-Castillo [23]. Some of the properties of the Mutual Information index

have been previously noted by Mora and Ruiz-Castillo in the case of two ethnic groups [37, 38].
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districtwide ethnic distribution:

Entropy of district
H=M
ethnic distribution

While the Entropy index is normalized to reach a maximum value of one, the Mutual In-
formation index has no maximum value. However, the Entropy index violates two of our
axioms.

In order to judge our axioms, one must have an idea of what we are trying to mea-
sure. A starting point is James and Taeuber’s [29] definition of segregation as the tendency
of ethnic groups to have different distributions across locational units such as schools or
neighborhoods. In a later paper, Massey and Denton [35] discern five different dimensions
of segregation. The first, evenness, agrees with James and Taeuber’s definition. The sec-
ond dimension is isolation from the majority group. The three other dimensions rely on
geographic information and thus are not relevant to our study.’

While evenness generalizes easily to the multigroup setting, isolation is more of a chal-
lenge, since there is more than one other ethnic group from which a student can be “iso-
lated.” Hence, we replace isolation with the concept of representativeness: to what extent
do students attend schools that have different ethnic compositions than the district as a
whole? The concepts are related, since racially isolated schools are, by definition, not
representative of their districts. But unlike isolation, representativeness is not based on
exposure to just one other group.

The concept of representativeness is connected to economic issues such as equality of
opportunity. Boozer, Krueger, and Wolkin [3] and Hoxby [24] find that the ethnic com-
position of a school affects individual students’ achievement. In the presence of such
ethnic-based peer effects, a lack of representativeness can create unequal educational op-

portunities among students of different races. Evidence for this appears in Hanushek, Kain,

"These dimensions are concentration in a small area, centralization in the urban core, and clustering in a

contiguous enclave.



and Rivkin [22], who find that the higher proportion of blacks in the school attended by the
typical black student can explain a large portion of the black-white wage gap.

These two dimensions are also related to the two interpretations of the Mutual Infor-
mation index. When schools are not representative of the district, a student’s school con-
veys information about her race. When evenness is violated (i.e., when ethnic groups
are not identically distributed across schools), a student’s race conveys information about
her school. Thus, a district’s deviation from representativeness (evenness) determines how
much information a random student’s school (race) conveys about her race (school). In this
sense, the Mutual Information index is affected by deviations from both representativeness
and evenness.

Unlike other segregation indices, the Mutual Information index has no maximum value.
This allows it to capture changes in interracial exposure better than normalized indices
(section 4). It also affords the index an intuitive decomposition across geographic levels
and ethnic groups that other indices lack (section 5). We illustrate by decomposing school
segregation among urban schools in the United States simultaneously by geographic level
(state, city, district, and school) and ethnic group (Asian, black, Hispanic, white). Rivkin
[45] and Clotfelter [7] find that, within U.S. cities, segregation across districts exceeds
segregation within districts. We confirm this finding. However, segregation among the
districts of a city accounts for only 33% of total segregation. Another 32% is due to
segregation across states. This is driven mainly by the distinct residential patterns of
Hispanic students, 53% of whom attend schools in Texas, California, and New Mexico,
compared to only 14% of non-Hispanic students. This and other empirical findings appear
in section 6.

The first to study segregation axiomatically was Philipson [41], who provides an ax-
iomatic characterization of a large family of segregation orderings that have an additively
separable representation. The representation consists of a weighted average of a function
that depends on the school’s ethnic distribution only.

In two papers, Hutchens [25, 26] studies the measurement of segregation in the case



of two ethnic groups. Hutchens [25] characterizes the family of indices that satisfy a set
of mostly cardinal properties. Hutchens [26] strengthens one axiom and obtains a unique
segregation index, which is based on the Atkinson inequality index [1]. Frankel and Voljj
[20] axiomatize multigroup versions of the Atkinson index using ordinal axioms. Finally,
using cardinal axioms, Echenique and Fryer [16] characterize a segregation measure that
relies on data on social networks to measure the isolation of an individual or group from
other ethnic groups.

The rest of the paper is organized as follows. Section 2 presents our notation. In
section 3 we explain our axioms. The main result appears in section 4. In section 5, we
consider three other properties and show which properties are satisfied by existing school
segregation indices. Section 6 applies the Mutual Information index to public schools in
the U.S. Most results are proved in Appendix A. Properties of other indices (section 5),

many of which are already known, are proved in a second, unpublished appendix.

2 Notation

We assume a continuum population. This is a reasonable approximation when ethnic
groups are large. For brevity, we use small integers in our examples; each “person” should
be interpreted as representing some large, fixed number of students.

Formally, we define a (school) district as follows:

Definition 1 A district X consists of

e A nonempty and finite set of ethnic groups G(X)
e A nonempty and finite set of schools N(X)

e For each ethnic group ¢ € G(X) and for each school n € IN(X), a nonnegative

number 7' the number of members of ethnic group g that attend school n.



We will sometimes specify a district in list format: <<Tgn)geg>n€N. For instance,
((10,20), (30, 10)) denotes a district with two ethnic groups (e.g., blacks and whites) and
two schools. The first school, (10, 20), contains ten blacks and twenty whites; the second,
(30, 10), contains thirty blacks and ten whites.

For any two districts X and Y, X WY denotes the result of combining the schools in X
and the schools in Y into a single district. If X is a district and « is a nonnegative scalar,
then X denotes the district in which the number of students in each group and school
has been multiplied by «. Finally, ¢(X) denotes the district that results from combining
the schools in X into a single school. So, for instance, if X = ((10,20), (30, 10)) and
Y = ((40,50)), then X W'Y = ((10,20),(30,10), (40, 50)), 2X = ((20,40), (60, 20)),
and ¢(X) = ((40, 30)).

The following notation will be useful:

T, = Z T;: the number of students in ethnic group g in the district
neN

T = Z T;: the total number of students who attend school n
geG

T = Z T,: the total number of students in the district
geG

T, . : o . .
P, = Tg: the proportion of students in the district who are in ethnic group g

mn
P" = ?: the proportion of students in the district who are in school n

n
n g9

Py = Tu (for T™ > 0): the proportion of students in school n who are in ethnic group ¢

The ethnic distribution of a district X is the vector <Pg)gEG of proportions of the stu-
dents in the district who are in each ethnic group. The ethnic distribution of a nonempty
school n 1s the vector (pg)gG ¢ of proportions of students in school 7 who are in each ethnic
group. A school is representative if it has the same ethnic distribution as the district that

contains it.



3 Axioms

We now introduce our eight axioms.® Let C be the set of all districts. A segregation
ordering = is a complete and transitive binary relation on C. We interpret X > Y to mean
“district X is at least as segregated as district Y.” The relations ~ and > are derived from
= in the usual way.” A related concept is the segregation index: a function S : C — R.

The index S represents the segregation ordering = if, for any two districts X, Y € C,
X2Y < S(X)>S8(Y) (1)

Every index S induces a segregation ordering »= that is defined by (1).

We impose axioms not on the segregation index but on the underlying segregation or-
dering. These approaches are not equivalent. As in utility theory, a segregation ordering
may be represented by more than one index, and there are segregation orderings that are
not captured by any index.

A district’s segregation ranking or simply its segregation is its place in the segregation
ordering. We will sometimes say that if a transformation o : C — C is applied to a district
X, then “the segregation of the district is unchanged” or “the district’s segregation ranking
is unaffected.” By this we mean that o(X) ~ X. If this holds for all districts X, then we
will say that the segregation in a district is invariant to the transformation o.

Evenness and representativeness are properties of the row and column percentages of
the district matrix. Nothing in these concepts suggests that the rows or columns should be
treated asymmetrically. Accordingly, our first axiom states that the order of the schools or
groups and their labels such as “black”, “Roosevelt School,” etc., do not matter: all that

matters is the number of each group who attend each school.

$Eight may seem a lot. However, the axiom count can always be reduced by combining related axioms,
at some sacrifice of clarity. We ask that the reader judge our axioms based on their content and not on their

quantity.

Thatis X ~ Y ifboth X =Y andY = X; X = Yif X = Y butnotY = X.
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Figure 1: The School Division Property. In panel a, a district has been partitioned into two
clusters, one containing a single school n. In panel b, school n has been divided into schools 14
and ny. The School Division Property states that segregation is no lower in panel b than in panel
a and, moreover, that segregation is the same in the two panels if schools 12; and n5 have the same

ethnic distribution.

Symmetry (SYM) The segregation in a district is invariant to any relabeling or reordering

of the groups or the schools in the district.

One type of research for which this axiom may not be suitable is work that focuses on the
problems that face a particular ethnic group. For instance, if one is interested in the social
isolation of blacks from all other groups, then one may want to treat blacks differently.

We motivate the next three axioms with a brief discussion. Suppose we partition a
district into K clusters, C'; through C'x, each consisting of a subset of schools in the district.
Define segregation within a given cluster as the segregation ranking of the cluster viewed
in isolation, as a distinct school district. Define segregation between the K clusters as the
segregation ranking of a district with K schools £ = 1, ..., K, where school k consists of
the students in cluster £ in the original district. We would like the district’s segregation
ranking to be a function of segregation within each cluster, segregation between the clusters,
and the relative sizes of the different clusters. Naturally, a district’s segregation ranking
should be a nondecreasing function of both segregation within each cluster and segregation

between the K clusters.
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The first axiom that uses this principle is illustrated in Figure 1. In panel a, we divide
a district into two clusters. The first, cluster C', consists of all schools except a single
school n. The second, cluster (5, consists of school n alone. In panel b, school n has
been torn down and replaced by two new schools, n; and n,. Each student who formerly
attended school n now attends either school n; or ny; all other students attend the same
schools as before. This change should not lower segregation in the district. Why? The
only factor affected by the split is segregation within cluster Cs. There has been no change
in segregation within cluster ', segregation between the clusters, or the relative sizes of
the two clusters. Since initially cluster C; was not segregated at all, splitting school n
cannot lower segregation in this cluster. Accordingly, splitting school n should not lower
segregation in the district either. If schools n; and n, have the same ethnic distribution,
then cluster C is not segregated at all after the split, since each school is representative
of the cluster. In this case, the segregation ranking of the district should not change.
These conclusions are formalized in the following axiom, which is satisfied by all indices

of school segregation of which we are aware (section 5).

School Division Property (SDP) Let X € C be a district in which the set of schools is
N. Let X’ be the result of splitting some school n € N into two schools, n; and n,.

Then X’ = X. If both schools have the same ethnic distribution, then X’ ~ X.

This axiom implies, for instance, that a district with 110 whites and ten blacks in a
single school does not become more segregated if the ten blacks and an equal number of
whites are relocated to a second school: the district ((110,10)) is no more segregated
than the district ((100,0), (10, 10)). Of course, one can think of notions of “segregation”
that would contradict this. A student in the school (10,10) might think that her new
environment is more “integrated” since it has equal numbers of blacks and whites. No
model can capture all possible notions of segregation. Our only hope is to specify a few
well-defined criteria that are likely to be related to variables of economic interest. By the

representativeness criterion, segregation in the district has indeed increased: the original
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school was representative of its district and the two new schools are not.!” If peer effects
are important, then the change is likely to widen the black-white achievement gap.

SDP is related to two properties that are discussed by James and Taeuber [29] and
subsequent authors. The first is organizational equivalence: if a school is divided into two
schools that have the same ethnic distribution, the district’s level of segregation does not
change. The second is the transfer principle. When there are two demographic groups, the
transfer principle states that if a black (white) student moves from one school to another
school in which the proportion of blacks (whites) is higher, then segregation in the district
rises. In the case of two ethnic groups, SDP follows from organizational equivalence and
the transfer principle.!! But while SDP applies directly with any number of groups, it is
unclear what form the transfer principle should take with more than two groups.'?

Our next axiom is illustrated in Figure 2. In panel a, two districts, X and Y, are
being compared. The districts are assumed to have the same number of students and
ethnic distribution. In panel b, a cluster that contains a single school has been adjoined to
each of these districts. The axiom states that the addition of this cluster should not affect
which district is more segregated. That is, the district on the left hand side in panel b is
more segregated than the district on the right hand side in panel b if and only if X is more
segregated than Y. Intuitively, since X and Y have the same size and ethnic distribution,
the between-cluster segregation is the same in each combined district in panel b. Moreover,
segregation within cluster Z is the same in the two combined districts. Hence, which of

the combined districts in panel b is more segregated reduces to whether segregation within

10With respect to evenness, ethnic groups are (trivially) distributed evenly across schools in the first district

but not in the second.
"Proof available on request.

12For instance, suppose a black student moves to a school that has higher proportions of both blacks and
Asians but fewer whites. Since there are more blacks, one might argue (using the transfer principle) that
segregation has gone up. On the other hand, blacks are now more integrated with Asians. One attempt to

overcome this difficulty appears in Reardon and Firebaugh [43].
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Panel ¢

Panel b

Figure 2: Type I Independence (IND1). Panel a shows two districts, X and Y, that have the same
size and ethnic distribution. INDI states that adjoining the same cluster containing a single school

to the two districts (panel b) does not affect which district is more segregated.

cluster X is greater than segregation within cluster Y.

Type I Independence (IND1) Let X, Y € C be two districts with equal populations and
equal ethnic distributions. Then for any district Z that contains a single school,

X =Yifandonlyif XWZ =Y W Z.

Since X and Y have the same number of each ethnic group, one can think of Y as a
reallocation of the students in X.'> IND1 states that this reallocation raises segregation in
the district if and only if it raises segregation within the cluster. The Dissimilarity Index
violates this principle.'* For instance, let X = ((50,100), (50, 0)) and Z = ((100,0)).
Suppose that the students in cluster X are reallocated to yield Y = ((100, 40), (0, 60)).

3IND1 does not require Y to have the same number of schools as X. Hence, the reallocation might be

accompanied by new school construction or conversion of some schools to other uses.

4“With two ethnic groups, the Dissimilarity Index is defined as the minimum proportion of either group

that would have to be reallocated in order for all schools to be representative of the district.
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Figure 3: In panel a, a given district, 7, is combined with each of two districts, X and Y, which
have the same total number of students but possibly different ethnic distributions. In panel b, all
the schools in Z have been combined into a single school. Type II Independence states that this

merger does not affect which combined district is more segregated.

The Dissimilarity Index within this cluster rises from 0.5 to 0.6, but the index for the full
district falls, counterintuitively, from 0.75 to 0.6. IND1 rules out such behavior.

A second type of independence is depicted in Figure 3. In panel a, a given district,
Z, is paired with each of two districts, X and Y. As in Figure 2, X and Y have the
same total number of students; unlike that case, their ethnic distributions may differ. In
panel b, all the schools in Z have been combined into a single school; the resulting cluster
is denoted ¢(Z). Type II Independence states that this merger of schools does not affect

which combined district is more segregated.

Type II Independence (IND2) Let XY, Z € C be three districts such that 7'(X) =
T(Y). Letc(Z) be the cluster that results from combining the schools in Z into
a single school. Then X W Z = Y W Z ifand only if X We(Z) = Y W e(2).

A motivation is as follows. Suppose that, in panel a, the combination of X and Z is

more segregated than the combination of Y and Z. What must be driving this? Segregation
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within cluster Z is the same in the two districts in panel a. So the combination of within-
X segregation and between-X -and-~Z segregation must exceed the combination of within-
Y segregation and between-Y -and-Z segregation. Moreover, since X and Y are of the
same size, the relative importance of within-cluster and between-cluster segregation is the
same in the two cases. Now consider panel b. Merging the schools in Z does not affect
segregation between this cluster and either X or Y. Consequently, if in panel b the district
containing cluster X is more segregated than the district containing cluster Y, then the
combination of within- X segregation and between-X -and-Z segregation must exceed the
combination of within-Y segregation and between-Y -and-Z segregation, just as in panel
a. Moreover, since the merger does not affect the size of any cluster, it does not change
the relative importance of within-cluster and between-cluster segregation. Accordingly,
merging the schools in Z should not affect which merged district is more segregated. In
other words, the degree of segregation within a given cluster should not affect the relative
importance of between-cluster segregation and segregation within the other clusters in the
district. In section 5 we show that if an ordering violates Type Il Independence, then an
index that represents it cannot be decomposable across schools in a particular simple way
(Proposition 1).

IND?2 is violated by most existing school segregation indices. For instance, consider
X = ((50,0),(0,100)), Y = ((100,0),(0,50)) and Z = ((50,0), (0,100)). Intuitively,
X and Z have the same ethnic distribution, which differs from that of Y. Hence, between-
cluster segregation is lower in X W/ than in Yw.Z. However, for most indices to reach their
maximum value, it suffices for segregation within each cluster to be at a maximum: they
regard X W Z and Y W Z as maximally, and thus equally, segregated. It is only as within-
cluster segregation falls that these indices begin to reflect between-cluster segregation: they

regard X Wc(Z) as strictly less segregated than Y W c(7), violating IND2.!> IND2 implies

13This behavior characterizes all indices surveyed in section 5 except the Mutual Information index. For
the Clotfelter index, this assumes that the first group is identified as blacks and the second as whites. Details

are available on request.
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that an index cannot ignore between-cluster segregation even if within-cluster segregation
is at a maximum.

The next axiom is used to compare districts with different ethnic distributions. It states
that segregation is invariant to the division of an existing ethnic group into two identically
distributed subgroups. For instance, if white students are divided into those with blue eyes
and those with brown, and these groups have the same distribution across schools, then the

segregation of a district should not change.

Group Division Property (GDP) Let X € C be a district in which the set of ethnic groups
is G. Let X' be the result of partitioning some ethnic group g €G into two ethnic

groups, g; and go, such that both ethnic groups have the same distribution across

T Tn
schools: =2+ = =22 foralln € N.!® Then X' ~ X.
Tfll TQQ

Intuitively, suppose we partition the ethnic groups of X into K sets or “supergroups.”
Define within-supergroup segregation to be the segregation of the district that would result
if all students who are not members of the given supergroup were removed. Let between-
supergroup segregation be the segregation of the district that would result from treating
each supergroup as a single ethnic group. Then segregation in X should be a function of
segregation within each supergroup, segregation between the supergroups, and the relative
sizes of the supergroups.

This principle helps motivate GDP in the following way. Let us partition the ethnic
groups of X into two supergroups, one consisting of group g alone and the other consisting
of all other groups. Suppose group g is split into two groups, g; and g, which have the
same distribution across schools. This change clearly does not affect segregation within
either supergroup, nor does it affect segregation between the supergroups or the relative
sizes of the two supergroups. Hence, the district’s segregation ranking should not be

affected by the split. In section 5 we show that an ordering that violates GDP cannot

16Note that X’ has the same set N of schools as X and for each school n € N, Tg” = Tg”1 + T;; .
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be represented by an index that is decomposable over groups in a particular simple way
(Proposition 1).

The criteria of evenness and representativeness pertain to the row and column percent-
ages in the district matrix. Multiplying the whole matrix by a scalar does not affect these
percentages, so it should not affect the segregation ranking of a district. Hence, we assume
the following axiom, which is satisfied by all school segregation indices of which we are

aware (section 5):

Weak Scale Invariance (WSI) The segregation ranking of a district is unchanged if the
numbers of agents in all ethnic groups in all schools are multiplied by the same

positive scalar: for any district X € C and any positive scalar o, X ~ o X .7

This axiom implies, e.g., that the districts ((10%,0), (0, 10°)) and ((100,0), (0, 100))
are equally segregated. One may argue that the first district is more segregated because
it is less likely to be the outcome of random assignment of students to schools (see, e.g.,
Cortese, Falk, and Cohen [12]). However, our focus is not on the ex ante process by which
students are assigned to schools, but rather on the ex post segregation of students among
schools. Whether an ex ante or ex post measure is relevant depends on the context. If
one cares about how segregated peer groups create unequal opportunities, an ex post mea-
sure is more suitable. This point has been made in the sociological literature by Taeuber
and Taeuber [49, p. 886]. If one is trying to detect discriminatory policies, one may be
interested instead in an ex ante segregation measure.

One weakness of ex ante segregation measures is that they can be manipulated: by

simply increasing the number of schools, a district can make random assignment harder to

7One may argue that ((1,100), (100,1)) is more segregated than ((2,200), (200, 2)) since in the first
district, there are two students with no peers of their own race while in the second each has at least one.

“]”

Recall, however, that we assume a continuum population: person represents many identical students.
This assumption is made for technical convenience. It is a good approximation in large districts for all but
the smallest ethnic groups. And since the entropy term plog,(1/p) is close to zero when p is small, our

representation will not be sensitive to these small groups in any event.
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rule out statistically. Under the hypothesis of color-blind assignment, the Mutual Informa-
tion index (times a scale factor) is distributed x? with degrees of freedom increasing in the

number of schools. More precisely:

Claim 1 Let X be a district with T students. Let Hy be the hypothesis of color-blind
assignment: that the probability that a random student is of race g and attends school
n is the product of some constants o™ and B, Let Hy be the alternative in which this
probability is unrestricted. The log-likelihood ratio statistic for H, versus Hi equals
the Mutual Information index of the district, multiplied by 2T n(2). This test statistic is
asymptotically distributed as x* with (N — 1)(K — 1) degrees of freedom, where N is the

number of schools and K is the number of ethnic groups in X.'8

Suppose a district with a policy of racial separation subdivides one school into two new
schools with the same ethnic distribution. The Mutual Information index is unchanged,
by the School Division Property (Theorem 1, below). However, the increase in degrees of
freedom makes it harder for a statistician to reject the hypothesis of color-blind assignment.
The district has manipulated the test. In contrast, the only way the Mutual Information
index can be reduced is by actually making schools more representative of their district.
The next axiom is a technical continuity property. We rely on this axiom to prove that

the segregation ordering is represented by a segregation index.

Continuity (C) For any three districts X, Y, Z € C, {c € [0,1] : ¢cX W (1 — )Y = Z} and
{c€[0,1]: Z = ¢X W (1 — ¢)Y} are closed sets.

Our final axiom states that there exist two districts with two nonempty ethnic groups

that are not equally segregated. It is needed to rule out the trivial segregation ordering.

Nontriviality (N) There exist districts X,Y € C, each with exactly 2 nonempty ethnic
groups, such that X > Y.

8This result is proven for the case of two ethnic groups by Mora and Ruiz-Castillo [38, pp. 32-33]. The

general case is shown in our unpublished appendix.
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4 Main Result

Our main result is that the segregation ordering represented by the Mutual Information

index is the unique ordering that satisfies all of our axioms.

Theorem 1 The Mutual Information ordering is the only segregation ordering that satisfies

SYM, WSI, SDP, IND1, IND2, GDP, C, and N.

As noted in the introduction, the Entropy index of Theil [51] and Theil and Finizza [52]
is obtained by dividing the Mutual Information index by its maximum value, the entropy
of the district ethnic distribution. Thus, the Entropy index takes a maximum value of one,
while the Mutual Information index has no maximum value. As a result, these indices do
not give the same segregation ordering. The Entropy index ranks all districts with no ethnic
mixing as equally segregated, while the Mutual Information index assigns a higher segre-
gation level to districts in which there is more initial uncertainty about a student’s ethnicity.
Consider, e.g., the two districts ((50,0,0), (0,50,0), (0,0,50)) and ((50,0),(0,50)). In
each, segregation is at a maximum given the district ethnic distribution. ~Accordingly,
the Entropy index assigns each a value of one. In contrast, the Mutual Information index
equals 1.6 for the first district but 1.0 for the second. This difference arises since in the first
district, learning a student’s school conveys more information about a student’s ethnicity.

Now consider the two districts X = ((990,0), (0,10)) and Y = ((500,0), (0, 500)).
Once again, the Entropy index assigns each a value of one. However, there is much
less uncertainty about a random student’s ethnicity in X, so learning her school conveys
less information. Accordingly, the Mutual Information index is lower for X than for V'
(M = 0.08 versus M = 1.0, respectively).

In the context of school segregation, normalized indices have two important disadvan-
tages. First, they are not decomposable in a certain intuitive sense (section 5, below).
Second, they do not do a good job of capturing changes in interracial contact.' To il-

lustrate the second point, compare the effect of merging two schools in X, yielding the

9This argument is due to Clotfelter [6].
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one-school district ((990, 10)), with the effect of merging the two schools in Y, yielding
the one-school district ((500,500)). The first merger has a tiny effect on the interracial
exposure of the average student: 99% of students see only a 1% change in the percentage
of minorities. The second merger has a much larger effect: each student switches from a
completely segregated school to one that is half black, half white. The Mutual Information
index reflects this difference, falling by 0.08 in district X versus 1.0 in Y. In contrast, the

Entropy index misses the difference entirely, decreasing by 1.0 in both cases.

5 Other Indices

In an unpublished appendix, we discuss the other indices that have been used to study
school segregation and show which of our axioms are violated by them. We also consider
an additional property, Scale Invariance, and two decomposability properties. Scale Invari-
ance states that the segregation of a district is invariant to proportional changes in ethnic

group size:*°

Scale Invariance (SI) For any district X, ethnic group g € G(X), and constant « > 0, let
X’ be the result of multiplying the number of students in group ¢ in each school 7 in

district X by a. Then X' ~ X.

This property has both supporters and opponents in the field of school segregation (Taeuber
and James [48, p. 134]; Coleman, Hoffer, and Kilgore [9, p. 178]). One can easily verify
that the Mutual Information index violates it.

The next property states that, for any partition of a district’s schools into clusters, total

segregation in the district is the sum of between-cluster and within-cluster segregation:

Strong School Decomposability (SSD) An index S satisfies Strong School Decompos-
ability if, for any partition X = X' & --- & XX of the schools of a district into K

20This property is also known as Compositional Invariance (e.g., James and Taeuber [29, pp. 15-16]).
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clusters,

K
S(X) = S(c(XM) W We(XF) + ) PRS(XP) (2)

k=1
where S(c(X') W --- & (X)) is segregation between the K clusters, S(X%) is

segregation within cluster k, and P* is the proportion of students in cluster k.

Mora and Ruiz-Castillo [37] show that the Mutual Information index satisfies Strong
School Decomposability in the case of two groups. This and weaker forms of separability
have also been extensively discussed in the literature of the measurement of income in-
equality. Bourguignon [4], for instance, shows that a property analogous to Strong School
Decomposability fully characterizes the Theil inequality index (a close relative of the Mu-
tual Information index) within the class of differentiable relative inequality indices. Foster
[19] obtains a further characterization of the Theil inequality index by replacing the dif-
ferentiability requirement by a more appealing transfer principle. Hutchens [26] uses a
weaker version of separability to help characterize the Atkinson segregation index in the
two-group case.

The second, analogous property states that, for any partition of a district’s groups into
sets or “supergroups,’ total segregation is the sum of between-supergroup and within-

supergroup segregation:

Strong Group Decomposability (SGD) An index S satisfies satisfies Strong Group De-
composability if, for any partition of the ethnic groups of a district X into K super-

groups,

K
S = SK+ZPkSk 3)
k=1
where P, is the proportion of students who are in supergroup k; Sk is the segregation

of the district that would result from treating each supergroup as a single group; and
Sk 1s the segregation of the district that would result if all students not in supergroup

k were removed.

These decomposability properties are related to the two types of Independence and the

Group Division Property in the following way.
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Proposition 1 If' S is a segregation index that satisfies Strong School Decomposability,
then the segregation ordering represented by S satisfies Type I and Type Il Independence.
If S satisfies Strong Group Decomposability, then the induced segregation ordering satisfies

the Group Division Property.

Hence, if a segregation ordering violates the Group Division Property (respectively, either
Type I or Type II Independence), then it cannot be represented by an index that satisfies the
Strong Group (respectively, School) Decomposability. The Mutual Information index is

decomposable in both ways:

Proposition 2 M satisfies Strong School and Group Decomposability.

The properties of the Mutual Information index and other existing school segregation
indices are summarized in Table 1. Proofs appear in an unpublished appendix. Of all
indices considered, only M satisfies Strong School Decomposability. M is also the only
index that has no maximum value. These two properties are related, by the following

result:

Proposition 3 Let S : C — R, be a function with the following properties:

1. it attains a maximum value;
2. it treats ethnic groups symmetrically,

3. it equals zero only on districts in which all schools have the same ethnic distribution.

Then S violates Strong School Decomposability.

Most existing indices of school segregation satisfy properties 1-3 and so cannot satisfy
Strong School Decomposability. In contrast, the Mutual Information index takes no max-
imum value and satisfies SSD. The next section contains an empirical illustration of the

uses of SSD and SGD.
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6 U.S. School Segregation

In this section we show some uses of the Mutual Information index for the study of school
segregation in the U.S. We restrict to school districts that contain at least two schools and
that serve grades K-12. Schools not located in Core Based Statistical Areas (CBSA’s) or
that do not lie in the 50 U.S. states and the District of Columbia are excluded. We refer
to the resulting set of schools as “urban schools”. Data are for the 2005-6 school year and
come from the Common Core of Data (CCD) [46].

Table 2 computes the Mutual Information index for all urban schools in the U.S. and
decomposes it into various components. We use four, mutually exclusive ethnic groups:

Asians, (non-Hispanic) whites, (non-Hispanic) blacks, and Hispanics.?!

Since supergroup
schemas must be nested in order to apply Strong Group Decomposability, we remove one
ethnic group at a time.?> Let each ethnic group be denoted by its initials: A(sians),
W (hites), B(lacks), and H(ispanics). Let curly braces denote a supergroup; e.g., {W, B, H}

denotes the set of non-Asians. Applying equation (3) twice, we can decompose overall

segregation into three terms:

Segregation Segregation Proportion Segregation
among = between + of students between
AW,B, & H A& {W,B,H} inW,B, or H W & {B,H}
Proportion Segregation
+ | of students between 4)
in{B,H} B&H

2IThe CCD actually has five ethnic groups; the smallest, American Indian/Alaskan Native, is not repre-
sented in some school districts. This does not create problems for the Mutual Information index, which
ignores empty groups. However, some of the other indices require all groups to be nonempty. Hence, we

include this group with the second smallest group, Asians.

22We successively remove the most advantaged of the remaining ethnic groups, based on child poverty
rates in 2006. These were 12.2%, 14.1%, 26.9%, and 33.4% for Asians, whites, Hispanics, and blacks,
respectively (U.S. Census Bureau [53]).

23



These three terms appeatr, in this order, in columns 1, 2, and 3. They represent, respectively,
the contribution to total segregation of segregation between (1) Asians and non-Asians; (2)
whites and non-Asian minorities; and (3) blacks and Hispanics. Their sum appears in
column 4 and represents segregation among all four ethnic groups at the given geographic
level.

We simultaneously compute segregation at four geographic levels: states, CBSA’s, dis-
tricts, and schools. The first row of Table 2 computes segregation between states, treating
each state as a single “school”. For row 2, the Mutual Information index across CBSA’s is
first computed for each state. We then compute the average of these 51 indices, weighted
by state population. This average, which appears in row 2, is the within-state, between-
CBSA segregation. Row 3 show segregation at within CBSA’s, between districts. Row 4
shows segregation within districts, between schools. By SSD, the sum of rows 1-4 equals
total segregation between schools in the U.S., which appears in row 5.

Total segregation among the four groups across schools in the U.S. is 0.665 (row 5,
column 4). In panel B, all indices are re-expressed as percentages of this total. The
most important source of school segregation is the racial differentation of districts within
CBSA'’s, which accounts for 32.9% of the total. A comparison of columns 1-3 of row 8
shows that this is mostly due to the separation of whites from blacks and Hispanics. Seg-
regation between the states is also important, accounting for 31.7% of total segregation.
This is mainly due to the residential patterns of Hispanics: if we change the decompo-
sition order, removing Hispanics first instead of Asians, we find that 59% of segregation
across states is due to the segregation of Hispanics from non-Hispanics (results not shown).
Indeed, 53% of Hispanic students live in Texas, California, and New Mexico, while only
14% of non-Hispanic students live in these states.

Rivkin [45] and Clotfelter [7] find that segregation between whites and nonwhites is
mainly between districts within cities, rather than between schools within districts. This is

reflected in the difference between rows 3 and 4 of column 2.2 However, the properties

ZRivkin [45] and Clotfelter [7] also present detailed analyses of how segregation at these two levels varies
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of SSD and SGD allow us to compare more than two ethnic groups and more than two ge-
ographic levels at once. In addition, the mutual information index affords a more intuitive
decomposition than is available with other indices: the within-district term in a CBSA
is simply the average segregation level of the districts in the CBSA, weighted by student
populations. In Rivkin’s decomposition of the Gini index, the “within-district” term also
includes an enigmatic interaction term, making interpretation difficult. Clotfelter [7] uses
the Normalized Exposure index, which can be decomposed only in the case of two eth-
nic groups. In addition, as with the Gini index, the within-district term is not simply a
population-weighted average of the district Gini indices. Rather, the weight on a district
depends on the district’s ethnic distribution. The same problem afflicts the Entropy index,
H2

Table 3 analyzes segregation between pairs of ethnic groups. The least segregated pair
is Asians and whites (M = 0.144). The most segregated pair is blacks and Hispanics
(M = 0.475). The most important geographic level depends on the pair being considered.
Blacks and whites are primarily segregated across districts within CBSA’s: M equals
0.183, the highest district-level segregation of any ethnic group pair. This is also true to
a lesser extent for Asians and Hispanics (M = 0.091), though segregation across states is
almost as important (M = 0.087). For every other pair, the state is the most important
level, with blacks and Hispanics the most segregated pair at this level (M = 0.243).

Rank correlations among the indices in Table 1, using Kendall’s 7;, are shown in Ta-
ble 4. Each segregation index is computed across the full set of schools in each CBSA.
The Mutual Information index is most highly correlated with the Normalized Exposure in-
dex, followed by the Card-Rothstein index and the Entropy index. The mean correlation
between M and the other indices, 0.561, is the third highest in the table.

Table 5 ranks the large CBSA’s (those with at least 200,000 students in K-12 districts)

according to the Mutual Information index. The other indices in Table 1 are also shown.

across cities. We do not pursue such an analysis here.

24These observations are due to Reardon and Firebaugh [43, pp. 53-4].
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The entropy of the CBSA’s public school ethnic distribution, h, appears in the final column
and reflects the ethnic diversity of students in the CBSA. Since the Mutual Information
index cannot exceed h, the high ranking of Chicago and New York are made possible by
their diverse ethnic compositions. However, this relation is not monotonic. San Francisco,
Sacramento, and Las Vegas all have diverse (high-entropy) ethnic distributions but low
rankings by the Mutual Information indices. Cleveland and Detroit have high Mutual

Information indices despite their lower levels of ethnic diversity.

7 Conclusions

In this paper we give an axiomatic foundation for multigroup segregation, based on the
criteria of evenness (how differently are ethnic groups distributed across schools?) and
representativeness (how different are the ethnic distributions of individual schools from
that of the district?).

We assume only ordinal axioms. We show that a unique ordering satisfies these axioms.
This ordering has many representations. We focus on one of them, the Mutual Information

index.?

It equals the mutual information of a student’s race and her school when these
are viewed as random variables (Cover and Thomas [14]). It can be interpreted both
as the information that a student’s school conveys about her race and, vice-versa, as the
information that her race conveys about her school. These dual intuitions should facilitate
the index’s application to empirical work on the causes and effects of school segregation.
The Mutual Information index is unusual in that it is not normalized to take a maximum
value. This allows it to capture interracial exposure better than normalized indices. It
also affords the index intuitive decompositions across ethnic groups and geographic levels.

These decompositions are not possessed by other common indices.

We illustrated the use of these decompositions by studying the sources of segregation

25 An index represents the ordering if and only if it is a strictly increasing transformation of the Mutual

Information index.
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across urban public schools in the U.S. in 2005-6. As Rivkin [45] and Clotfelter [7]
find, segregation between districts within cities is indeed important, accounting for about
a third of total segregation. But segregation across states is nearly as important. This is
driven mainly by the distinct residential patterns of Hispanics, who are disproportionately
concentrated in the southwestern states of Texas, California, and New Mexico.

The Mutual Information index is not scale invariant: it is sensitive to the overall ethnic
distribution of the district. For axiomatizations of multigroup segregation that assume

scale invariance, see Hutchens [25, 26] and Frankel and Volij [20].

A  Proofs

Proof of Claim 1. Let 77 be the probability that a random student is in ethnic group g and
attends school n. Under Hy, 7, = a"f3,. The log-likelihoods for the two hypothesis are
thus:

Hy 1n<HH(oﬂﬁg)T5>:ZT”lnauZTglnﬁg

neN geG neN geG
Hy i In (H 11 (vzﬂ") =D > Ty
neN geG neN geG

with constraints » v a" = > 8, = land } y> 57y = 1. The likelihood-
maximizing parameters are " = T"/T, 8, = T,/T, and v = T,;'/T. The log-likelihood

ratio for a test of H, versus H, thus equals

LR = -2 (ZT”IH%—FZTHIH%—ZZT;M%)

neN geG neN geG
= 2 TIT "1 - =2T'In(2)M (X
- 2(Snng - Y ) - 2rmeu)
geG neN geG 9

The unrestricted (respectively, restricted) model has N K — 1 (respectively, N + K — 2)
degrees of freedom. Hence, 27 In(2) M (X)) is asymptotically distributed as x? with (N —
1)(K — 1) degrees of freedom. Q.E.D.
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Proof of Theorem 1. We first show that the ordering represented by the Mutual Informa-
tion index satisfies the axioms. Axioms N, SYM, and WSI are trivial, and C follows from
the fact that the index M is a continuous function of the 7"’s (the number of students of
each group in each school). Axioms IND1, IND2,and GDP follow from Propositions 1 and
2. So it remains to show that SDP is satisfied. Let X € C be a district and let n be a school
of X. Let X’ be the district that results from dividing n into two schools, n; and ny. Since

X and X’ have the same ethnic distribution,

M(X') = M(X) = P*h((pg)gec(x)) = P h((Py' )gea(x)) — P h((P)?)gea(x))

pm pre
=pr" (h((PZ)geG(Xﬂ - ﬁh((pgl)geem) ~ Bn h((PZ2)geG<X))>

P"1 ny

But for all g, pi = LZpit + Z22p2 so, recalling that h((gy)gec) = > gec Qo logQ(é) is
a concave function, M (X') — M (X) > 0, with strict inequality only if schools n; and n
have different ethnic distributions. This verifies SDP.

We now show that the Mutual Information ordering is the only segregation ordering
that satisfies all the axioms. Let = be a segregation ordering that satisfies them. For any
district X, let the schools be numbered n =1, ..., N and the groups g =1, ..., G.

For any ethnic distribution P = (Pg)le, let X(P) denote the district, with population
1, with group distribution P, and with G uniracial schools, and let X (P) denote the one-

school district with ethnic distribution P and population 1:
X(P) = {(P,0,...,0),..(0,...,0,Pg)) and X(P)={((P,...,Pg)).

For any integer G > 1, let X9 = ((1/G,0,...,0),...,(0,...,0,1/G)) denote the com-
pletely segregated district of population 1 with G equal sized ethnic groups. Let X¢ =
((1/G,...,1/G)) denote the one-school district with the same ethnic distribution and pop-
ulation.

We first state and prove some preliminary lemmas. By applying IND1 repeatedly, one
can show the following apparently stronger (but actually equivalent) property, which will

be used interchangeably with INDI.
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Lemma 1 Suppose the segregation ordering = satisfies INDI. Let X,Y € C be two
districts with equal populations and equal ethnic distributions. Then for all districts Z € C'

containing any number of schools, X =Y ifandonly if X W7 = Y W Z.

Proof. Let the schools of Z be enumerated: nq,...,ny. By INDI1, X > Y if and only if
X W (ny) =Y W (ng), where (n;) denotes a district that consists of school n; alone. The
districts X’ = X' W (n1) and Y’ = Y W (n) have the same size and ethnic distribution since
X and Y do. Hence, by IND1, X’ = Y’ ifand only if X' & (ns) = Y’ W (ny). The result

follows by repeating the same argument for schools ns, ...,ny. Q.E.D.

Lemma 2 1. All districts in which every school is representative have the same degree

of segregation under =.

2. Any district in which every school is representative is weakly less segregated under

= than any district in which some school is unrepresentative.

Proof.

1. Consider any district Y that consists of N representative schools. By WSI we can
assume w.l.o.g. that T'(Y) = 1. Foreachi = 1,..., N, let Y; be the school district
consisting of schools ¢+ 1 through N of Y as well as a single school that contains the
students in schools 1 through 7 of Y. By SDP, foreachi =1,.... N — 1,Y; ~ Y.
Hence, by transitivity, Y = Y; ~ Yy. Yy contains a single school. By GDP,
Yy ~ X!, and hence Y ~ X*.

2. Consider any district Y in which at least one school is unrepresentative. The above

procedureyieldsY =Y, =Y, = --- =Yy~ X L By transitivity, Y > X L

Q.E.D.

Lemma 3 For any district Z with G ethnic groups, let 0(Z) € C be such that the number

of persons of ethnic group g in school n in Z equals the number of persons of ethnic group
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(9 + 1)mod G in school n in 0(Z). Define c'(Z) = o(Z) and, for integers j > 1, let
0/(Z) = o(077Y(Z)).% Then é@le ol(Z) = Z.

Proof. Consider the following statement:
(Wi 2) w (W e2) < (WD) 0 (W, oe2) )

For n = 0, (5) simply states L—ﬂle VARES (Lﬂle aj(c(Z))), which holds by Lemma 2.
Assume that (5) holds for some n = k, with 0 < k < G — 1. Then, taking into account that

0@ is the identity permutation,

(Wi 2) © (W) we2) < (Wi o/(2) 0 (W 07 (e(2)) we(2)
— (W 2) e (Wne@) vz < (W, 0(2) )

2
VN
&

s
o o
Q
<
N
N—
&
VN
*
“‘Q
3
+
[\&]
Q
<
o
\N

Wo(Z) Dbydef ofo

N—

- )

(Wi 2) v (Wae2) < (W o/(2)) & (W0 (e(2)

That is, (5) also holds for n = k + 1. By induction it also holds for n = G — 1. That is,
Lﬂle 7 < b-JjG:l 0’(Z) which, by SDP and WSI implies Z < & Lﬂle /(7). QE.D.

Lemma 4 For any district X with G groups and group distribution P, x° = X(P) = X.

Proof. By WSI, w.l.o.g. we can assume that 7(X) = 1. X can be converted into a
completely segregated district by dividing each school n into G distinct schools, each of
which includes all and only the members of a single ethnic group. By SDP, this procedure
results in a weakly more segregated district. By then combining all schools containing a
given ethnic group, this can be converted to X (P) without changing the segregation level
(by SDP). To see that X &= X, note that by Lemma 3, £ +f:1 o/(X(P)) = X(P). But
by SDP, the left hand side district is as segregated as X Q.E.D.

2Note that 0% (Z) = Z.
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Lemma 5 For any integer G > 1, x¢ < X,

Proof. Let X be the (G + 1)-group district that results after splitting one ethnic group in
x° up into two equally distributed subgroups. By Lemma 4 and GDP, X =X ~ x°
Q.E.D.

Lemma 6 Let X and X' be two districts with the same size and ethnic distribution such

that X = X'. Let1>a>[>0. ThenaX ¥ (1 —a)X' > X W (1—- )X

Proof. By WSI, (o — )X > (a — §)X’. Since X and X’ have the same size and ethnic
distribution, so do (« — $)X and (o — 3)X’. So by INDI,

BXW(a—B)XW(1—-—a)X = XY (a-XW(1l—-a)X
By SDP, aX W (1 — o)X’ > X W (1 - 5)X’. QE.D.

Lemma 7 For any districts Z = X = Y such that Z >~ Y and Y and Z have the same

size and ethnic distribution, there is a unique o € [0, 1] such that X ~ aZ ¥ (1 — a)Y.

Proof. Thesets {av € [0,1] : aZ W (1 — @)Y = X}and{a € [0,1] : X = aZ W (1 — )Y}
are closed by C. Any « satisfies X ~ aZ W (1 — )Y if and only if it is in the intersection
of these two sets. Given that Z = X = Y, these sets are each nonempty. Their union is
the whole unit interval since = is complete. Since the interval [0, 1] is connected, the inter-
section of the two sets must be nonempty. By Lemma 6, their intersection cannot contain

more than one element. Thus, their intersection contains a single element a.. Q.E.D.

Let X be a district with GG groups and ethnic distribution P = (131, s ]3(;) For any
G’ > 1 and any distribution P = (P,, ..., Ps) let ¥’ (X) be the district that results after
splitting each ethnic group ¢ in district X into G’ ethnic groups in proportions given by P.
That is, the 7,' members of each ethnic group g in each school n of X are split up into G’
ethnic groups of size P17, ..., Po/T,'. The resulting district ¢" (X) has GG’ groups with
distribution ((ﬁgpg,)g’;l) /

g'=1
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Let X be a district and let P = (]31, . ﬁg) be an arbitrary distribution such that
Y(]S) = X and 7(?) = X By lemmas 4 and 5 such a distribution exists. By Non-
triviality, Lemma 4, and Lemma 2, X - X2~ X (18) Therefore, by Lemma 7 there is a
unique « such that

X ~aX(P)w (1 —a)X(P). (6)

Similarly, by Lemma 7 there is a unique 3 such that X~ 57(13) W (1l — 3)1 (ﬁ) By
Lemma 6, 3 > 0, as X(P) = X
Define the index S : C — R by

S(X)=a/B 7

For S to be well defined, 62/3 cannot depend on the particular choice of P. We now
verify this. Consider another distribution P = (P, ..., Pe) such that X(P) » X and
X(P) = X and let @ and 3 the unique numbers such that X ~ aX(P) ¥ (1 — &)X (P)
and X~ ~ BX(P)w (1 — 3)X(P). By GDP

X~ o (GX(P)w (1-@)X(P)) ~ ao” (X(P)) w(1-a)” (X(P) @)

Similarly, applying the transformation ¢IS to (6) and using GDP,

X ~ag” (X(P)) w (1 -a)o” (X(P)) ©)
Both gbﬁ (1 (ﬁ)) and ¢13 (K (ﬁ)) are districts with the same number of groups (G * G')
and (up to a permutation) the same ethnic distribution. Further by SYM, ¢ﬁ (K (ﬁ)) ~

" (K (15)) . Similarly, both gzﬁﬁ (Y(ﬁ)) and gzﬁl3 (7(?)) are districts with the same num-

ber of groups and (up to a permutation) the same ethnic distribution. Assume w.l.o.g. that

oF (7(ﬁ)> = o (7(?)) and let -y be the unique number such that

o (X(P)) ~ 6" (X(P)) w(1-7)0” (X(P))
Then, applying WSI, INDI1 (twice) and SDP, it follows from (9) that

X ~a[ye” (X(P) w(1 =76 (X(P)] w1 -a)” (X(P))

~ 76" (X(P)) w (1 - 1@)e” (X(P)) (10)
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Comparing (10) and (8) we obtain that @ = . Exactly the same reasoning leads to

B = Bv. Consequently a/ B =a/ 3. This establishes that S is well-defined.

Lemma 8 The index S defined in (7) represents =.

Proof. Let X,Y € C and let GG be at least as large as the number of groups in X or Y.
Then, by lemmas 4 and 5, x° = YQ, X = X and x° =Y. Define ax, ay and 3 by
X ~axX o (1—ax)X®
Y ~ay X (1—ay)X®
X~ X% (1 - B)XC.
Then,

XY &= axX W(l-ax)X% = ayX W (1 —ay)X® by definition of ay and ay

<— ax > ay by Lemma 6
— ax/B>ay/s since 3 > 0
— S(X)>S5(Y) by definition of S

Q.E.D.

The following results will be used to show that S’ is the Mutual Information index.

Lemma 9 For any ethnic distribution P = (P, ..., Pg) (in which some entries may be
zero), let P = (%, o %, o %, e %) be the ethnic distribution that results from di-
viding each ethnic group in P into G equal sized groups. Then Y(ﬁ) = X% and

X(P) = X(P).

Proof. For the first claim, first subdivide each ethnic group in X% into G groups in
proportions given by P. For instance, the first group is divided into G groups of sizes
Plé, s P(;é. Now put each resulting group in a separate school. The group distribu-
tion of the resulting district, (P15, ..., Po g, ..., Pig, ..., Pag ), is just a permutation of P.

Hence, by GDP and SDP, X (P) = X “. The second claim follows from the first one after
noting that by Lemma 4, x° = X(P). QE.D.
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Lemma 10 Let districts 7, Zs, Z3, and Z4 all have the same population and ethnic distri-
bution and let Zy ~ Zy and Z3 ~ Z4. Let Zs, Zg be two districts with equal populations.
ThenZlLﬂZg,NZg&JZﬁifandonlyifZg&JZg, NZ4&JZG.

Proof. By IND2 applied twice, Z1 W Z5 ~ Z; W Zg ifand only if Z3 W Z5 ~ Z3 W Zg. But
by IND], Zl W Z6 ~ ZQ (] ZG and Zg W ZG ~ Z4 ) ZG- QED

Lemma 11 For any districts X andY, S(X WY) = S(c(X)WY) + %S(X).

Proof. Let X and Y be any two districts. Let X W Y have G ethnic groups. By adding
an empty group if needed, we can assume WLOG that G > 2. For any district Z, let
A ) be the result of splitting each group ¢ in Z into GG equal-size groups, each of which
has the same school distribution as g. Let P be the group distribution of <;§G(X ). By
Lemma 9, X(P) 3 X, Define ay by X ~ axX(P)w (1 — ax)X(P) and v by
((X)WY ~~yX(P)W (1 — )X (P). Define

Zy = ¢%(X)

Zy = T(X)X(P)

Zs = ¢%(Y)
- T(X) -
Ze=T(XWY XP)W (1 — —F—— — X(P
s= 1Y) (X P e (1- g ) X))

To show that Zs is well defined, we must show that v < 1 — T(T)(()é))/) = T(j;g;). For this,
by Lemma 6, it is enough to show that

X(P)w(1—+)X(P) = TY) X(P)u TM)X@) (11)

i VTS X wy) TXwY)="
The district ¢(X) WY has G groups since X &Y does. By Lemma 3,
(X)WY < q Lﬂj:la (c(X)WY) = q Hj:1a (c(X)) W a Lﬂj:la (Y)
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Let ¢(X) = L LIS, 09(c(X)) and ¥ = L7, 07(Y). Each of ¢(X) and YV has G
groups of equal size. By SDP, c/(S(/) ~ T(X)X® and both of these districts have the same
population, 7'(X), and the same ethnic distribution. Since Y has G equal size groups, it
is not more segregated than T(Y)YG and both of these districts have the same population,

T(Y), and the same group distribution. Therefore,

G

(X)WwY < T(X)XwT(Y)X by IND1 (twice)
~ ¢C (T(X)XG " T(Y)7G> by GDP
~ T(X)¢% (XF) wT(Y)6C (YG) by definition of ¢©
< T(X)X(P)wT(Y)X(P) by SDP
T(X T(Y) D
~ e X(P) W s X (P) by WSI

Bute(X)wY ~ 77(16) W(l— 7)&(]3) so (11) holds and v < T(j;g)y), as claimed.
By construction, 7, Z,, Z3, and Z, all have the same population and ethnic distribution.
By GDP, Z; ~ Z,. Clearly, Z3 ~ Z, since these are actually the same district. Also, the

population of Zg is T'(Y"), which equals the population of Z5. Moreover,

ZiwWZs = T(X)X(P)WT(XWY) (77(13) " (1 .S v) X(ﬁ))

T(XwY) =
= T(XwY) (7 X(P) s (1-7)X(P)) by SDP
~ ((X)WY by WSI
~ %(e(X)) B S (Y) by GDP
= ZiW Zs

So by Lemma 10,
ZIL‘UZ5 NZQL‘UZG (12)
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Now,

XWY ~¢“(X WY) by GDP
:th‘ﬂZg,
~ Zy W Zg by (12)

= T(X) (aXY(ﬁ) W (1 — ax)ﬁﬁ))

WT(XWY) <7Y(13) g (1 - % - v) 1(13))

T(X) _

~(T(XWY)y+ T(X)ay) X(P)wT(X 6Y) (1 — - mw) X(P) by SDP

~

~ (7 + %ax) X(P)w (1 —y— %ax) X (P) by WSL

We have shown that X WY ~ (7 + %@0 Y(ﬁ) t <1 —y— %@J X(ﬁ) By
definition of v and ay, ¢((X) WY ~ vX(P) W (1 —4)X(P)and X ~ axX(P) & (1 —
ax)X(P). By Lemma 7, there is a unique 3 such that X7~ BX(P)w (1 - B)X(P).
By definition of S, S(X &Y) = (7 + T++(Y)ax) = S(E(X)WY) + —L _~S(X), as

T
T+T(Y)
claimed. Q.E.D.

For any discrete probability distribution P = (P, ..., Pg), define the function s(P) to
equal S(X(P)).

Claim 2 The function s is the entropy function. Namely, s(P) = h(P) = """, P;log, &

Proof. It is known that the entropy function is the only function that satisfies the following

three properties.?’
1. h(1/2,1/2) = 1.

2. h(p,1 — p) is continuous in p.

2The statement of this result appears as an exercise in Cover and Thomas [14]. For the original proof, see

Faddeev [17].
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3. h(ph apn) = h(pl +p2ap3a "'7pn) + (pl +p2) h <plil_):p27 ],IPTQPQ>

So it is enough to show that s satisfies them. Property 1 follows from the definition of S and
the fact that S(X(1/2,1/2)) = S (72). Property 3 follows from Lemma 11. It remains to
show property 2. Let us write X (p, 1 —p) as ZP for brevity. By Lemma 7, there is a unique
o, such that ZP ~ ap72 W(1—a,)X?. By definition of S, a,, = S(X(p,1—p)). Forall p,
the sets {q : Z9 = ZP} and {q : Z? < ZP?} are closed by Continuity. Note that Z7 = Z? if
and only if o, > oy, by Lemma 6. So the sets {q : a;, > o, } and {q : oy < «,,} are closed.
If o, is not a continuous function of p, then let the sequence (pj)7>; converge to some p.
By restricting to an appropriate subsequence, we may assume that limy,_,, oy, exists. Let

this limit be ¢ and assume by contradiction that ¢ # «,,. Assume that ¢ > «, (the other

ctap

5 for

% there is a k* such that a,,, >

case is analogous). Since limy,_.o o, = ¢ > —5

all k > k*. So the sequence {p;, : k > k*} liesin {q: a, > <2}, But limj oo pr = p

does not lie in this set, which contradicts the fact that this set is closed. Q.E.D.

We now show that S is the Mutual Information index. Consider any district X with N
schools, G ethnic groups, and ethnic distribution P. Let Xy = X. Let X,, be the result of
separating the students in each school m < n into GG uniracial schools. For instance, if X =
((1,2),(3,4)), then X; = ((1,0),(0,2),(3,4)) and X5, = ((1,0),(0,2),(3,0),(0,4)).
Note that X v is completely segregated and has ethnic distribution P, so Xy ~ X (P). By
Lemma 11,

S(X,) = S(X,_1) + P"S(X(p")) forn=1,...,N.
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Thus,

—Z:Plog2 ZP”Zpglog2 n.

where the last line follows from Claim 2. This completes the proof of Theorem 1. Q.E.D.

Proof of Proposition 1: INDI: Let X and Y have the same size and ethnic distribution,
and let Z be another district. Then ¢(X) = ¢(Y) and T'(X)/T(X W Z) = T(Y)/T(Y &
Z) = p. Then, applying SSD, M (X & Z) > M (Y & Z) if and only if

M (e(X) 6 ce(Z)) + pM(X) + (1 =p)M(Z) = M (c(Y) W (2)) + pM(Y) + (1 —p)M(Z)

& M(X) = M(Y)

IND2: Let W, X, Y € C be three districts such that (W) = T'(X). Then, T'(W)/T(W &
Y)=T(X)/T(X JY) = p. Now, applying SSD,

MWuWceY))>MXWcY)) < McW)de(Y))+pM(W) > M(c(X)wce(Y)) +pM(X)
& M(cW)¥c(Y)) +pMW) + (1 =p)M(Y) = M(c(X) & c(Y)) +pM(X) + (1 = p)M(Y)
S MWWY)> MXWY)

The proof of GDP is similar and is left to the reader. Q.E.D.

Proof of Proposition 2: Let X = X' ---w XX be district composed of K clusters. By
definition of M,

M(X) = Z > P

k=1 neN(X¥k)
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Subtracting and adding "1, P*h(P(X*)) on the right hand side, we obtain

M(X)=h(P(X)) = Y PR(P(X") + ) P'R(P(X*) =) > P'h(p")

k=1 neN(Xk)

= W(P(X)) = Y PR(P(X*) + 3" PF [ a(p(x*) — Y Prapr)
k=1 k=1 neN(XF)
= M(c(X") Wy we(XF) + ) PFM(XP).

k=1
This shows that M satisfies SSD. That M satisfies SGD as well now follows from the
symmetry of mutual information (Cover and Thomas [14, pp. 18 ff.]). Q.E.D.

Proof of Proposition 3: Suppose S satisfies SSD and properties 1-3. Let the maximum
value of S be attained by the district X. Define another district, X , that is a copy of X in
which each ethnic group has been replaced by a new ethnic group not in X. (For instance,
if X has K groups that go to K separate schools, then let X’ consist of a different K groups
that go to K separate schools.) Then by SSD, S(X WX ) = S(c(X)we(X)) + 1S(X) +
S (X'). The sum of the second and third terms equals S(X) by symmetry. But the first
term is strictly positive by property 3. This contradicts the hypothesis that .S attains its

maximum at X. Q.E.D.
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Mutual Information Entropy Index Weighted Dissimilarity Gini
Symbol M H DWW G
Defined by | [50] [51,52] [27, 40, 47] [27,42]
Used by [21, 36, 39] [44, 48, 54] [7, 44, 48, 54] [7, 44, 48]
Formula | h(P) = 3, Prh(p") | 1— Zup b | LSy 55 Prlpr — Byl | &5, 5,5, PmP" by —pp
SYM v v v v
WSI v v v v
SDP v v v v
IND1 v v X X
IND2 v X X X
GDP v X X X
C v v v v
N v v v v
SI X X 2 2
SSD v X X X
SGD v X X X
Name Normalized Exposure Clotfelter Card-Rothstein Symmetric Atkinson
Symbol P C CR A
Defined by | [2,28] [7] [5] [20,29]
Used by [7, 10,9, 8, 54] [3,7,8] [5] [30]

T

Formula Zg >on P”% %2 Zmpgzm Ty | >, (77:2: - %) % -3, <91€_[G t?) .
SYM v X X v
WSI v v v v
SDP v X X v
IND1 2 v X v
IND2 X X X X
GDP X N/A N/A X
C v v v v
N v v v v
SI X X X v
SSD X X X X
SGD X N/A N/A X

Table 1: Properties of School Segregation Indices. A check mark indicates that the property is satisfied by the index. An “x”

indicates that it is not. “2”indicates that it is satisfied only in the 2-group case. The notation I denotes the Simpson Iteraction Index,
I=3% geg Pg(1 — Pg) (Lieberson [33]). The properties are Symmetry (SYM), Weak Scale Invariance (WSI), the School Division
Property (SDP), Type I Independence (IND1), Type II Independence (IND2), the Group Division Property (GDP), Continuity (C),

Nontriviality (N), Scale Invariance (SI), Strong School Decomposability (SSD), and Strong Group Decomposability (SGD).
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DECOMPOSITION OF URBAN SCHOOL SEGREGATION IN U.S.

1 2 3 4
Aslan vs.

White, |White vs.

Black, Black
and and Black vs.

Geographic Level Hispanic | Hispanic | Hispanic Total

A. ABSOLUTE MUTUAL INFORMATION INDICES

1 Between States in US 0.030 0.089 0.093 0.211
2 Between CBSAs in States 0.013 0.067 0.028 0.108
3 Between Districts in CBSAs 0.022 0.173 0.023 0.219
4 Between Schools in Districts 0.016 0.073 0.038 0.127
5 Total: Between Urban Schools in U.S. 0.081 0.402 0.181 0.665

B. PERCENTAGES OF TOTAL URBAN SEGREGATION

6 Between States in US 4.4% 13.3% 13.9% 31.7%
7 Between CBSAs in States 2.0% 10.1% 4.2% 16.2%
8 Between Districts in CBSAs 3.4% 26.1% 3.4% 32.9%
9 Between Schools in Districts 2.4% 11.0% 5.7% 19.2%

10 Total: Between Urban Schools in U.S. 12.2% 60.6% 27.3% 100.0%

Table 2: Decomposition of Segregation Between Urban Schools in U.S., 2005-6 School Year. Analysis is restricted to K-12 districts
that contain at least two schools. Schools not located in CBSA’s or that do not lie in the 50 U.S. states and the District of Columbia are
excluded. Data are from the Common Core of Data (CCD). Mutual Information index is computed for all schools in universe defined
above and decomposed into various components. Ethnic groups are mutually exclusive: Asians (including American Indians/Alaskan
natives), (non-Hispanic) whites, (non-Hispanic) blacks, and Hispanics. The three terms in equation (4) appear in columns 1, 2, and
3. Column 1 shows how much segregation at the given geographic level is due (in an accounting sense) to segregation between Asians
and non-Asians. Column 2 shows the contribution of segregation between whites, on the one hand, and blacks and Hispanics on the
other. Column 3 shows the contribution of segregation between blacks and Hispanics. For precise definitions, see text. The sum of
these numbers, appears in column 4 and (by Strong Group Decomposability) represents segregation between the four ethnic groups at
the given geographic level. Four geographic levels are used. The first row computes segregation between states, treating each state as a
single “school”. For row 2, the Mutual Information index across CBSA’s is first computed for each state. We then compute the average
of these 51 indices, weighted by state population. This average, which appears in row 2, is the within-state, between-CBSA segregation.
Row 3, computed analogously, shows segregation within CBSA’s, between districts. Row 4 shows segregation within districts, between
schools. By Strong School Decomposability, the sum of rows 1-4 equals total segregation between schools in the U.S., which appears
in row 5. Total segregation among the four groups across schools in the U.S. is 0.665 (row 5, column 4). In panel B, all indices are

re-expressed as percentages of this total.
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URBAN SCHOOL SEGREGATION BETWEEN PAIRS OF ETHNIC GROUPS
1 [ 2 | 3 4 | 5 6

Asian vs. White vs. Black vs.
Geographic Level White | Black |Hispanic|] Black [Hispanic | Hispanic

A. MUTUAL INFORMATION INDICES
Between States in US 0.059 0.173 0.087 0.062 0.168 0.243
Between CBSAs in States 0.024 0.036 0.056 0.060 0.069 0.073
Between Districts in CBSAs 0.040 0.106 0.091 0.183 0.115 0.060
Between Schools in Districts 0.022 0.068 0.067 0.077 0.060 0.100
Total: Between Urban Schools in U.S. 0.144 0.383 0.301 0.382 0.411 0.475

Table 3: Urban School Segregation between Pairs of Ethnic Groups, 2005-6 School Year. Analysis is restricted to K-12 districts
that contain at least two schools. Schools not located in CBSA’s or that do not lie in the 50 U.S. states and the District of Columbia
are excluded. Data are from the Common Core of Data (CCD). Ethnic groups are mutually exclusive: Asians (including American
Indians/Alaskan natives), (non-Hispanic) whites, (non-Hispanic) blacks, and Hispanics. The first row computes segregation between
states, treating each state as a single “school”. For row 2, the Mutual Information index across CBSA’s is first computed for each
state. We then compute the average of these 51 indices, weighted by state population. This average, which appears in row 2, is the
within-state, between-CBSA segregation. Row 3, computed analogously, shows segregation within CBSA’s, between districts. Row 4
shows segregation within districts, between schools. By Strong School Decomposability, the sum of rows 1-4 equals total segregation

between schools in the U.S., which appears in row 5.

RANK CORRELATIONS (KENDALL'S TAU-B)

INDEX [ Mm | H] D] G ] P [Coo[C50] CR|[ A

Mutual Information (M) 1 0.668 0.521 0.539 0.859 0.467 0.5 0.706 0.23
Entropy Index (H) 0.668 1 0.817 0.843 0.733 0.418 0.352 0.603 0.453
Weighted Dissimilarity (D) 0.521 0.817 1 0.918 0.602 0.341 0.253 0.51 0.472
Gini (G) 0.539 0.843 0.918 1 0.622 0.367 0.271 0.524 0.473
Normalized Exposure (P) 0.859 0.733 0.602 0.622 1 0.462 0.485 0.727 0.258

Clotfelter (90% threshold) (CI90) 0.467 0.418 0.341 0.367 0.462 1 0.629 0.46 0.243
Clotfelter (50% threshold) (CI50) 0.5 0.352 0.253 0.271 0.485 0.629 1 0.502 0.129

Card-Rothstein (CR) 0.706 0.603 0.51 0.524 0.727 0.46 0.502 1 0.214
Symmetric Atkinson (A) 0.23 0.453 0.472 0.473 0.258 0.243 0.129 0.214 1
Mean (diagonal excluded) 0.561 0.611 0.554 0.570 0.594 0.423 0.390 0.531 0.309

Table 4: Kendall’s Rank Correlation (Tp) Between Pairs of Multigroup Segregation Indices, 2005-6 School Year. C50 and C'90
refer to Clotfelter index with thresholds x = 0.5, 0.9, respectively. Universe is set of Core Based Statistical Areas that lie in 50 U.S.
states and District of Columbia. Schools that do not lie in a K-12 district that contains at least two schools are excluded. Data are
from the Common Core of Data (CCD). Ethnic groups are mutually exclusive: Asians (including American Indians/Alaskan natives),

(non-Hispanic) whites, (non-Hispanic) blacks, and Hispanics.
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Segregation of Public Schools Within Large CBSA's (Various Indices)

Rank | Abbreviated CBSA h
by M Name M H D G P Cloo | CI50 CR A
1 Chicago 0.905 0.516 0.696 0.847 0549 0.777 0.923 0.668 0.847 1.753
2  New York 0.728 0.390 0.596 0.755 0.406 0.586 0.859 0.612 0.755 1.866
3  Milwaukee 0.685 0.448 0.674 0.804 0.524 0.439 0.880 0.635 0.804 1.529
4  Cleveland 0.633 0527 0.738 0.873 059 0517 0.871 0.682 0.873 1.202
5 Detroit 0.632 0506 0.695 0.832 0583 0.685 0.802 0.695 0.832 1.248
6 Philadelphia 0.586 0.388 0.602 0.764 0.448 0.450 0.744 0558 0.764 1.510
7 L.A. 0,552 0.349 0.570 0.736 0.357 0.497 0.892 0.469 0.736 1.583
8 Miami-Ft. Lauderdale 0530 0.315 0.534 0.695 0.348 0.555 0.912 0.347 0.695 1.682
9 Atlanta 0.524 0.332 0549 0.716 0.381 0.450 0.773 0469 0.716 1.579
10 Washington 0.519 0.292 0.511 0.667 0.324 0.458 0.767 0.470 0.667 1.776
11 St Louis 0.516 0.461 0.670 0.827 0548 0.528 0.751 0.609 0.827 1.119
12 Baltimore 0.511 0.371 0593 0.761 0.457 0519 0.744 0.542 0.761 1.376
13 San Francisco 0.506 0.259 0.470 0.623 0.257 0.172 0.721 0.360 0.623 1.956
14 Houston 0.491 0.279 0.493 0.649 0.289 0.426 0.815 0.402 0.649 1.759
15 Memphis 0.486 0.398 0.663 0.793 0.463 0.673 0.838 0.514 0.793 1.221
16 Dallas-Ft. Worth 0.471 0.273 0.489 0.647 0.300 0.317 0.755 0.385 0.647 1.726
17 Boston 0.459 0.350 0.592 0.749 0.397 0.228 0.645 0.479 0.749 1.312
18 Kansas City 0.423 0.336 0.566 0.712 0.405 0.313 0.698 0.515 0.712 1.258
19 Denver 0.407 0.272 0.521 0.657 0.329 0.170 0.673 0.370 0.657 1.496
20 Columbus 0.375 0.349 0.571 0.752 0.400 0.259 0.608 0.483 0.752 1.075
21 Indianapolis 0.374 0.333 0.603 0.749 0.381 0.149 0.617 0.463 0.749 1.123
22 Cincinnati 0.368 0.428 0.655 0.814 0.475 0.365 0.660 0.560 0.814 0.861
23 Providence 0.352 0.304 0.572 0.722 0.383 0.016 0.489 0.380 0.722 1.159
24  San Diego 0.350 0.200 0.419 0.561 0.215 0.086 0.689 0.248 0.561 1.747
25 Nashville 0.337 0.275 0.541 0691 0.330 0.117 0.611 0.389 0.691 1.228
26 Austin 0.332 0.208 0.442 0580 0.240 0.223 0.650 0.293 0.580 1.592
27 San Antonio 0.325 0.242 0.489 0.639 0.269 0.236 0.834 0.233 0.639 1.343
28 Orlando 0.312 0.186 0.400 0.533 0.208 0.243 0.655 0.259 0.533 1.684
29 Carlotte 0.311 0.208 0.441 0586 0.261 0.133 0.624 0.321 0.586 1.495
30 Jacksonville, FL 0.306 0.227 0.458 0.618 0.290 0.201 0.589 0.347 0.618 1.349
31 Sacramento 0.301 0.164 0.380 0.510 0.178 0.011 0461 0.209 0.510 1.839
32 Minneapolis-St. Paul 0.288 0.234 0.476 0.630 0.289 0.019 0.342 0.289 0.630 1.232
33 Tampa-St. Petersburg 0.281 0.189 0.410 0.553 0.213 0.117 0.528 0.276 0.553 1.487
34 Pittsburgh 0.281 0.383 0.643 0.785 0.405 0.191 0568 0.456 0.785 0.733
35 Virginia Beach 0.254 0.184 0.414 0563 0.241 0.129 0.723 0.281 0.563 1.380
36 Riverside, CA 0.252 0.162 0.387 0.523 0.185 0.141 0.785 0.212 0.523 1.553
37 Las Vegas-Paradise 0.242 0.136 0.348 0.468 0.165 0.090 0.610 0.188 0.468 1.781
38 Phoenix 0.199 0.146 0.360 0.493 0.189 0.015 0.265 0.138 0.493 1.362
39 Seattle 0.199 0.137 0.347 0476 0.155 0.009 0.180 0.194 0.476 1.453
40 Portland, OR 0.172 0.137 0.345 0.476 0.133 0.005 0.243 0.186 0476 1.252

Table 5: Segregation of Public Schools Within CBSA’s (Various Indices), 2005-6 School Year. C'50 and C'90 refer to Clotfelter
index with thresholds k = 0.5, 0.9, respectively. Universe is set of Core Based Statistical Areas that lie in 50 U.S. states and District of
Columbia with at least 200,000 students. Schools that do not lie in a K-12 district that contains at least two schools are excluded. Data
are from the Common Core of Data (CCD). Ethnic groups are mutually exclusive: Asians (including American Indians/Alaskan natives),
(non-Hispanic) whites, (non-Hispanic) blacks, and Hispanics. h is the entropy of the ethnic distribution of public school students in the

CBSA.
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