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EXPERIENTIA DOCET: PROFESSIONALS PLAY MINIMAX IN
LABORATORY EXPERIMENTS

BY IGNACIO PALACIOS-HUERTA AND OSCAR VOLIJ1

We study how professional players and college students play zero-sum two-person
strategic games in a laboratory setting. We first ask professionals to play a 2 × 2 game
that is formally identical to a strategic interaction situation that they face in their nat-
ural environment. Consistent with their behavior in the field, they play very close to
the equilibrium of the game. In particular, (i) they equate their strategies’ payoffs to
the equilibrium ones and (ii) they generate sequences of choices that are serially in-
dependent. In sharp contrast, however, we find that college students play the game far
from the equilibrium predictions. We then study the behavior of professional players
and college students in the classic O’Neill 4 × 4 zero-sum game, a game that none of
the subjects has encountered previously, and find the same differences in the behavior
of these two pools of subjects. The transfer of skills and experience from the familiar
field to the unfamiliar laboratory observed for professional players is relevant to eval-
uate the circumstances under which behavior in a laboratory setting may be a reliable
indicator of behavior in a naturally occurring setting. From a cognitive perspective, it
is useful for research on recognition processes, intuition, and similarity as a basis for
inductive reasoning.

KEYWORDS: Laboratory experiments, minimax, experience, cognition.

We transfer our experience in past instances to objects which are resembling, but are not
exactly the same with those concerning which we have had experience. � � � Tho’ the habit
loses somewhat of its force by every difference, yet ’tis seldom entirely destroy’d, where
any considerable circumstances remain the same. (Hume (1739))

1. INTRODUCTION

AN IMPORTANT ISSUE in economic research that relies on data collected in
a laboratory is how applicable are the insights gained for predicting behav-
ior in natural environments. This paper addresses this issue for situations that
involve strategic interaction. Game theory is, in fact, one of the areas where
experimental data from the laboratory are often used to inform theoretical
developments.2 One reason for this is that nature does not always create the

1We are grateful to three anonymous referees and a co-editor for detailed feedback that greatly
improved the paper. We also thank Jose Apesteguia, Vicki Bogan, Juan Carrillo, Pedro Dal Bó,
the late Jean Jacques Laffont, Bradley Ruffle, Ana I. Saracho, Jesse Shapiro, and audiences at
various seminars and conferences for helpful comments and suggestions. We are especially grate-
ful to the general managers of the soccer clubs that granted access to the players who participated
in this study and to the Universidad del País Vasco for its hospitality. We gratefully acknowledge
the financial support from the Salomon Foundation and the Spanish Ministries of Science, Tech-
nology and Education (grants BEC2003-08182 and SEJ2006-05455), as well as the editing assis-
tance of Estelle Shulgasser. Pedro Dal Bó provided the dice and Roberto Fontarrosa provided
motivation. Any errors are our own.

2Camerer (2003) offers a comprehensive review.
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circumstances that allow a clear view of the principles at work in strategic situ-
ations. Furthermore, naturally occurring phenomena are typically too complex
to be empirically tractable.

Laboratory environments provide valuable control of players’ information,
payoffs, available strategies, and other relevant aspects. This is important be-
cause game-theoretic predictions are often sensitive to changes in these vari-
ables. However, as Harrison and List (2004, pp. 1009–1011) point out, “lab ex-
periments in isolation are necessarily limited in relevance for predicting field
behavior, unless one wants to insist a priori that those aspects of economic
behavior under study are perfectly general. . . . [The reason is that] the very
control that defines the experiment may be putting the subject on an artificial
margin. Even if behavior on that margin is not different than it would otherwise
be without the control, there is the possibility that constraints on one margin
may induce effects on behavior on unconstrained margins.” These and other
concerns about the extent to which laboratory results may provide insights into
field behavior demand more elaborate experiments.3

In this paper we conduct a conventional experiment in which a nonstandard
pool of subjects plays a game whose unique equilibrium involves mixed strate-
gies. Our idea is to use professional soccer players to develop an “artefactual
field experiment” to study an aspect of games with mixed-strategy equilibria
that was not studied previously.4 Soccer has three unique features which make
it especially suitable for this purpose: (i) Professional soccer players face a sim-
ple strategic interaction that is governed by very detailed rules: a penalty kick.
(ii) The formal structure of this interaction can be reproduced in the labora-
tory. (iii) Previous research has found that when professional soccer players
play this game in the field, their behavior is consistent with the equilibrium
predictions of the theory. These three distinct characteristics allow us to study
whether the skills and heuristics that players may have developed in the field
can be transferred to the laboratory. Further, the extent to which field and lab-
oratory behavior differ can indicate whether laboratory findings are reliable
for predicting field behavior.

We proceed as follows. We first analyze the behavior of professional soccer
players in a laboratory setting playing a simultaneous two-person zero-sum 2 ×
2 game that is formally identical to a penalty kick. The equilibrium of the game
is unique and requires each player to use a mixed strategy. To test our method-
ological hypothesis, we also implement exactly the same controlled laboratory
experiment with subjects drawn from a standard subject pool of college stu-
dents with no soccer experience.

3See Harrison (2005), Weibull (2004), and Lazear, Malmendier, and Weber (2005) for other
concerns, and Camerer (2003), Harrison and List (2004), and Kagel and Roth (1995) for relevant
references on the development of different experiments.

4We use the term suggested in Harrison and List’s (2004) classification of experiments.
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Palacios-Huerta (2003) found that the behavior of professional players in
the soccer field was consistent with equilibrium play: (i) their winning proba-
bilities were statistically identical across strategies and (ii) their choices were
serially independent.5 The results we obtain in this paper can be summarized
as follows. We find that professional players’ behavior continues to be rather
consistent with the implications of equilibrium in the entirely different setting
of a lab. Interestingly, we also find that their behavior is in sharp contrast with
that of college students who play quite poorly from the perspective of the equi-
librium of the game: their distribution of play is significantly different from the
equilibrium one and they generate sequences that exhibit negative autocorre-
lation. We interpret these results as evidence that professionals transfer their
skills across these vastly different environments and circumstances. As such,
the nature of the subject pool is important for drawing inferences about the
predictive power of the equilibrium of the game.

These results may be of special interest in the context of understanding the
determinants of randomization, which is a testable hypothesis shared by every
game that admits a mixed-strategy equilibrium. An extensive literature in ex-
perimental economics, game theory, and psychology has consistently found
that subjects are unable to generate independent and identically distributed
(i.i.d.) sequences in the laboratory, but rather exhibit a significant bias against
repeating the same choice.6 We find, however, that professional soccer players
appear to generate random sequences in the lab while college students do not.

To evaluate whether professional players behave differently in a zero-sum
game they have not encountered previously in any setting, we asked them to
play the 4 × 4 two-person simultaneous game developed by O’Neill (1987) and
further studied by Brown and Rosenthal (1990), Shachat (2002), and Walker
and Wooders (2001). We also compare their behavior with that of college stu-
dents. Consistent with this literature, the results show that students behave in
a manner that is far from the unique equilibrium of the game. Although we
use much greater monetary incentives and subjects play more repetitions than
in previous studies of this game, students do not equate winning probabilities
across strategies and they generate sequences of choices that are not random.
In sharp contrast to this behavior, we find that professional soccer players play
quite close to equilibrium in most dimensions. Interestingly, one exception we
find partially comes from a component of this game that lacks a familiar con-
text.

We interpret the results that professionals whose play in the field is consis-
tent with equilibrium also behave close to equilibrium in a laboratory setting as
supporting the idea that the vast differences in environments do not undermine
the skills these subjects use in the field. This interpretation is strengthened by

5See also Chiappori, Levitt, and Groseclose (2002) for further evidence in support of equilib-
rium behavior.

6See Neuringer (2002) and Camerer (1995) for surveys of the relevant literature.



74 I. PALACIOS-HUERTA AND O. VOLIJ

the fact that payoffs in the lab are lower than in real life and that one of the
games played in the lab is entirely unfamiliar to the subjects. The evidence,
therefore, suggests that the game-theoretic equilibrium predictions may have
greater empirical content than previously thought for explaining behavior in
both natural and experimental settings. Further, the fact that the behavior of
professional soccer players is distinctly different from that of college students,
the subject pool typically studied in a large experimental literature, indicates
that the nature of the subject pool may be a critical ingredient of the laboratory
experiment for predicting field behavior.

From a methodological viewpoint, we see the artefactual field experiments
implemented in this paper as being complementary to traditional laboratory
experiments of games where players are predicted to choose probability mix-
tures. While perfectly competitive games do not represent the entire universe
of strategic games involving mixed strategies, they are considered a “vital cor-
nerstone” of game theory (e.g., Aumann (1987), Binmore, Swierzbinski, and
Proulx (2001)). Indeed, zero-sum games can be regarded as the branch of game
theory with the most solid theoretical foundations.7 From this perspective, the
positive results we find lend support to a fundamental result of game theory
in a setting where the small number of existing results have been mainly neg-
ative. Last, from the viewpoint of the literature on cognition and similarity as
a basis for inductive reasoning,8 the results support the hypothesis that cogni-
tive skills may exist beyond those that subjects are aware of in the context of
games involving mixed strategies, and that they can be transferred to the highly
unfamiliar environment of the lab.

2. EXPERIMENTAL PROCEDURES

We implement two different zero-sum games, each with two subject pools:
professional soccer players and college students. The experiments were con-
ducted during the period November 2003–October 2004 at the Universidad
del País Vasco in Bilbao (Spain). Each of the two zero-sum games was played
by a different set of 40 professional soccer players working in twenty pairs and
40 college students with no soccer experience working in twenty pairs. We also
recruited two additional sets of 40 college students with soccer experience at
the amateur level, one for each of the two games, for one of the extensions
of the analysis that will be discussed later. In what follows, we explain the re-
cruiting process for these 240 subjects and other aspects of the experimental
procedure, and then describe the experimental designs of the two games.

7Within the class of zero-sum games even the less stringent concept of correlated equilibrium
coincides with the set of minimax strategies. In this sense, the theory of minimax is one of the less
controversial ones from a theoretical point of view.

8See, for instance, Hume (1739), Gilboa and Schmeidler (2001), Gigerenzer and Todd (1999),
Selten (1998), Simon (1983), and other references therein.
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2.1. Subjects

Each subject participated in only one type of game and one session. Sessions
lasted about an hour, and subjects received their winnings as payment.

PROFESSIONAL PLAYERS: These subjects were recruited from professional
soccer clubs in Spain. As in many other countries, league competition in Spain
is hierarchical. It has three professional divisions: Primera Division with 20
teams, Segunda Division A with 22 teams, and Segunda Division B with 80
teams divided into four groups of twenty teams each.9 Our subjects were taken
from clubs in the north of Spain, a region with a high density of professional
teams.

Eighty male soccer players (40 kickers and 40 goalkeepers) were recruited
from these teams by telephone and by interviews during their daily practice
sessions. Marca (2005) offers a vitae of every player in Primera Division and
Segunda Division A that includes personal information, professional playing
history, and other records.10 Forty kicker–goalkeeper pairs were formed ran-
domly using the last two digits of their national ID card, the only requirement
being that subjects who were currently playing or had played in the past for the
same team were not allowed to participate in the same pair.

UNDERGRADUATE STUDENTS: One hundred and sixty male subjects were
recruited from the Universidad del País Vasco in Bilbao by making visits to dif-
ferent undergraduate classes. Subjects majoring in economics or mathematics
were excluded from the sample. Half of the subjects had no soccer experience.
The other half had soccer experience at the amateur level since it was required
that they should be currently participating in regular league competitions in
regional amateur divisions (the Tercera Division and below).11 These leagues
adhere exactly to the same structure and calendar schedule, and are governed
by the same rules (FIFA (2005)) as professional leagues.

9The next division in the hierarchy, Tercera Division, also includes some players who are pro-
fessional in that their salaries plus bonuses are similar to the average household salary in Spain.
The Tercera Division comprises 240 teams. Teams in divisions lower in the hierarchy, playing in
“regional leagues,” do not typically have any professional players. Our sample of amateur players
comes from the Tercera Division and these regional leagues.

10The average age in the sample is 26.5 years, and the average number of years of education is
11.2. No player who had played professionally for less than 2 years at the time of the experiment
was recruited. Data on wages and salaries on individual players are not publicly available, but
estimates from Marca (2005) and Deloitte and Touche (2005) indicate that wage expenditures
represent between 60 and 75 percent of revenue for most clubs. This means that for a typical
squad of 25 players, the average yearly wage is about 2 million dollars in the Primera Division and
0.5 million dollars in the Segunda Division A. These amounts exclude other sources of revenues
such as endorsements.

11The average age in the sample is 20.7 years, and the average number of years of education is
15.1. There are no statistical differences between the two pools of college subjects.
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Pairs were formed randomly using the last two digits of their national ID
card. For subjects with soccer experience, those who were currently playing or
had previously played for the same team were not allowed to participate in the
same pair.

2.2. Experimental Designs

2.2.1. Experiment 1: Penalty kick

In soccer, a penalty kick is awarded against a team that commits a punish-
able offense inside its own penalty area while the ball is in play. The Official
Laws of the Game (FIFA (2005)) describe in detail the simple rules that govern
this strategic interaction. Each penalty kick involves two players: a kicker and
a goalkeeper. In a typical kick the ball takes about 0.3 seconds to travel the
distance between the penalty mark and the goal line; that is, it takes less than
the reaction time plus the goalkeeper’s movement time to any possible path of
the ball. Hence, both kicker and goalkeeper must move simultaneously. The
penalty kick has only two possible outcomes: score or no score. Actions are
observable, and the outcome of the penalty kick is decided almost immediately
after the players choose their strategies.

The clarity and simplicity of these rules suggest not only that the penalty
kick can be studied empirically, but also that it may be easily reproduced in an
artificial setting such as a laboratory. The basic structure of a penalty kick may
be represented by the following simple 2 × 2 game:

L L
L πLL�1 −πLL πLR�1 −πLR

R πRL�1 −πRL πRR�1 −πRR

�

where πij denotes the kicker’s probability of scoring when he chooses i and the
goalkeeper chooses j, for i� j ∈ {L�R}. This game has a unique Nash equilib-
rium when πLR > πLL < πRL and πRL > πRR < πLR, which requires each player
to use a mixed strategy. When this game is repeated, equilibrium theory yields
two sharp testable predictions:12

1. The probability that a goal will be scored must be the same across each
player’s strategies and be equal to the equilibrium scoring probability, namely
p= (πLRπRL −πLLπRR)/(πLR −πLL +πRL −πRR).

2. Each player’s choices must be serially independent. Hence, a player’s
choices must be independently drawn from a random process and should not
depend on his own previous play, on the opponent’s previous play, or on any
other previous actions and outcomes.

12When a zero-sum two-outcome game is repeated a finite number of times, the only equilib-
rium of the resulting supergame consists of the repetition of the equilibrium of the one-shot game
at every round independently of players’ risk preferences (see Wooders and Shachat (2001)).
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Using data on over a thousand penalty kicks during a 5-year period in three
countries, Palacios-Huerta (2003) found strong support for the two implica-
tions of this 2 × 2 model. We adopt this model and bring it to the laboratory.
The payoffs we use in the experiment are

πLL = 0�60� πLR = 0�95� πRL = 0�90� πRR = 0�70�

They are derived from a sample of 2,717 penalty kicks collected from Euro-
pean professional leagues during the period 1995–2004.13 No other field refer-
ences and no soccer terminology that might trigger any type of psychological
reaction were used in the experiment.14 In particular, subjects were not told
that the structure of the game corresponds to a penalty kick or that the payoffs
correspond to empirically observed probabilities.

The rules of the experiment follow as closely as possible those of O’Neill
(1987). The players sit opposite each other at a table. Kickers play the role of
row player and goalkeepers play the role of column player. Each player holds
two cards (A and B) with identical backs. A large board across the table pre-
vents the players from seeing the backs of their opponents’ cards. The experi-
menter hands out one page with the following instructions (in Spanish), which
he then reads aloud to them:

We are interested in how people play a simple game. You will first play this game for about
15 hands for practice, just to make sure you are clear about the rules and the results. Then
you will play a series of hands for real money at 1 euro per hand. Before we begin, first
examine these dice. They will be used at some point during the experiment. They generate
a number between 1 and 100 using a 10-face die for the tens and another 10-face die for
the units. The faces of each die are marked from 0 to 9, so the resulting number goes from
00 to 99, where 00 means 100. [The two subjects examine the dice and play with them.]
The rules are as follows:

1. Each player has two cards: A and B.
2. When I say “ready” each of you will select a card from your hand and place it face

down on the table. When I say “turn,” turn your card face up and determine the winner.
(I will be recording the cards as played.)

3. The winner should announce “I win” and will then receive 1 euro.
4. Then return the card to your hand and get it ready for the next round.

I will explain how the winner is determined next. Are there any questions so far?
Now, the winner is determined with the help of the dice as follows:
• If there is a match AA, [row player’s name] wins if the dice yield a number between 01
and 60; otherwise [column player’s name] wins.
• If there is a match BB, [row player’s name] wins if the dice yield a number between 01
and 70; otherwise [column player’s name] wins.
• If there is a mismatch AB, [row player’s name] wins if the dice yield a number between
01 and 95; otherwise [column player’s name] wins.

13The exact empirical probabilities in the sample are πLL = 0�597, πLR = 0�947, πRL = 0�908,
and πRR = 0�698. The sample includes the 1,417 penalties studied in Palacios-Huerta (2003).

14The choice of parameters can add, to some extent, a field context to experiments. The idea,
pioneered by Grether and Plott (1984) and Hong and Plott (1982), is to estimate parameters that
are relevant to field applications and take these into a laboratory setting.
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• If there is a mismatch BA, [row player’s name] wins if the dice yield a number between
01 and 90; otherwise [column player’s name] wins.

The following diagram may be useful:

A B
A .60 .95
B .90 .70

Are there any questions?”

Thus, the game was presented with the help of a matrix, and the subjects
learned the rules after a few rounds of practice. The unique mixed-strategy
equilibrium of this game dictates that row and column players choose the A
card with probabilities 0.3636 and 0.4545, respectively. The subjects played 15
rounds for practice and then 150 times for real money, proceeding at their own
speed. They were not told the number of hands they would play. On the few
occasions when they made an error announcing the winner, the experimenter
corrected them.

A typical session lasted about 1 hour and 15 minutes, proceeding at about
two hands per minute. From the perspective of the response times study of
Rubinstein (2007) on instinctive and cognitive reasoning, it is of interest to note
that professionals took on average 70 minutes, which is 15 percent less time
than the average time taken by college students: 81 minutes and 24 seconds.
The difference is statistically significant.

2.2.2. Experiment 2: O’Neill (1987)

The design of this experiments closely follows O’Neill’s original design. The
players sit opposite each other at a table. Each player holds four cards with
identical backs. A large board across the table prevents the players from seeing
the backs of their opponents’ cards. The experimenter hands out one page with
the following instructions (in Spanish) to the participants, which he then reads
aloud to them:

We are interested in how people play a simple game. You will first play this game for about
15 hands for practice, just to make sure you are clear about the rules and results. Then you
will play a series of hands for money at 1 euro per hand. The rules are as follows:

1. Each player has four cards: {Red, Brown, Purple, Green}.
2. When I say “ready” each of you will select a card from your hand and place it face

down on the table. When I say “turn,” turn your card face up and determine the winner.
(I will be recording the cards as played.)

3. The winner should announce “I win” and will then receive 1 euro.
4. Then return the card to your hand and get it ready for the next round.

Are there any questions?
Now, to determine the winner: [subject 1’s name] wins if there is a match of Greens (two
Greens played) or a mismatch of other cards (Red–Brown, for example); hence, [subject 2’s
name] wins if there is a match of cards other than Green (Purple–Purple, for example) or a
mismatch of a Green (one Green, one other card).”
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The original instructions in Spanish for both this experiment and the penalty
kick experiment are available in the online supplement (Palacios-Huerta and
Volij (2008)). Thus, in this case the game was presented without the help of a
matrix and subjects learned the rules by practice. The payoff structure of the
game is

Red Brown Purple Green
Red − + + −

Brown + − + −
Purple + + − −
Green − − − +

where the + and − symbols denote a win by the row and column player, re-
spectively. The stage and the repeated games have a unique equilibrium which
requires both players to chose the red, brown, purple, and green cards with
probabilities 0.2, 0.2, 0.2, and 0.4, respectively. Subjects played 15 rounds for
practice and then 200 times for real money, proceeding at their own speed.
They were not told the number of hands they would play. If they happened to
make an error in determining the winner, the experimenter corrected them.

A typical session lasted slightly more than 1 hour, proceeding at about 3.3
hands per minute. As in the previous case, professionals took less time than
college students (in this case about 11 percent less time on average: 61.2 versus
67.9 minutes). The difference is statistically significant.

There are several differences between our design and that of O’Neill. For
one thing, our subjects engage in 200 stage games instead of 105. Second, we
rename the elements of the action space to be {Red, Brown, Purple, Green}, as
in Shachat (2002), rather than using {Ace, Two, Three, Joker}. This is done to
avoid the previously observed Ace bias.15 Nonetheless, to avoid confusion and
to facilitate comparison with the literature, actions will be referred to by the
names used in O’Neill’s experiment for the remaining exposition of the paper,
namely 1 (Ace) for Red, 2 (Two) for Brown, 3 (Three) for Purple, and J (Joker)
for Green. A last difference is that we use much greater stage game payoffs (the
winner receives 1 euro for a win rather than 5 cents; that is about 1.30 dollars
using the exchange rate at the time the experiment took place) and we do not
provide any initial endowments to the players.

3. EXPERIMENTAL EVIDENCE

This section is structured as follows. We first describe the evidence from the
penalty kick experiment for both the professionals and the college students
with no soccer experience, and then the results for O’Neill’s experiment for
each of these two pools of subjects.

15See O’Neill (1987) and Brown and Rosenthal (1990).
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3.1. Penalty Kick Experiment

3.1.1. Professional players

Table I presents aggregate statistics describing the outcomes of the experi-
ment. We use the standard notation of L and R instead of A and B. In the
top panel each interior cell reports the relative frequency with which the pair
of moves corresponding to that cell occurred. The minimax relative frequen-
cies appear in parentheses and the standard deviation for the observed relative
frequencies under the minimax hypothesis appears in brackets. At the bottom
and to the right are the overall relative frequencies with which players were
observed to play a particular card, again accompanied by the corresponding
relative frequencies and standard deviations under the minimax model. Ob-
served and minimax win frequencies for the row player are reported in the
bottom panel.

The pattern of observed relative frequencies for each pair of choices shows
a general consistency with the minimax model in that they all are within 1 to
2 percentage points of the predicted frequencies. Likewise, the marginal fre-
quencies of actions for the players are extremely close to the minimax predic-

TABLE I

RELATIVE FREQUENCIES OF CHOICES AND WIN PERCENTAGES IN PENALTY KICK EXPERIMENT
WITH PROFESSIONAL PLAYERSa

A. Frequencies
Column Player Choice Marginal

frequencies for
row player

L R
L 0�152 0�182 0�333

(0�165) (0�198) (0�364)
Row [0�0068] [0�0073] [0�0088]

Player
Choice R 0�310 0�356 0�667

(0�289) (0�347) (0�636)
[0�0083] [0�0087] [0�0088]

Marginal 0�462 0�538
frequencies for (0�455) (0�545)
column player [0�009] [0�009]

B. Win Percentages
Observed row player win percentage 0�7947
Minimax row player win percentage 0�7909
Minimax row player win std. deviation 0�0074

aIn panel A the numbers in parentheses represent minimax predicted relative frequencies, whereas those in brack-
ets represent standard deviations for observed relative frequencies under the minimax hypothesis. In panel B, minimax
row player win percentage and std. deviation are the mean and the standard deviation of the observed row player mean
percentage win under the minimax hypothesis.
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tions for the column player. Row players, on the other hand, choose frequen-
cies 0.333 for L and 0.667 for R� which, while close to the minimax predictions,
are statistically different from them.16 The observed aggregate row player win
frequency (0.7947) is less than 1 standard deviation away from the theoretically
expected value (0.7909). Although the aggregate mixture of the row players is
statistically different from the equilibrium one, the difference is minuscule.
Indeed, row players chose L with probability 0.33, while the equilibrium pre-
scribes 0.36. Also, if column players played the best response to row players’
actual mix, their success rate would increase from 20.9 percent to only 21.6
percent.

Data at the individual pair level allow a closer scrutiny of the extent to which
minimax play may be supported for most individual subjects and most pairs
of players. Table II reports the relative frequencies of choices for each of the
twenty pairs in the sample and some initial tests of the model.

The minimax hypothesis implies that the choices of actions represent inde-
pendent drawings from a binomial distribution where the probabilities of L are
0.363 and 0.454 for the row and column players, respectively. We should then
expect a binomial test of conformity with minimax play to reject the null hy-
pothesis for two players at the 5 percent significance level, and four players
at the 10 percent level. The results show that indeed these are precisely the
number of rejections at those confidence levels.

These initial findings support the hypothesis that professional soccer players
play very close to the equilibrium of the game, though not perfectly. However,
since equilibrium behavior also implies that action combinations should be re-
alizations of independent drawings of a multinomial distribution, further sup-
port is needed. To test whether the players’ actions are correlated, we perform
the following test. Minimax play implies that action combinations are realiza-
tions of independent drawings from a multinomial distribution with probabil-
ities 0.165 for LL, 0.198 for LR, 0.289 for RL, and 0.347 for RR. Table II
reports the relative frequencies of each combination of actions for each of the
twenty pairs in the sample. Using the corresponding absolute frequencies along
with their minimax probabilities, we can then test the joint hypothesis that play-
ers choose actions with the equilibrium frequency and that their choices are
stochastically independent. A chi-squared test for conformity with minimax
play based on Pearson’s goodness of fit with 3 degrees of freedom produces
the p-values reported in the last column of the table. Under minimax play we
would expect to reject the null hypothesis for one and two pairs at the 5 and 10
percent significance levels. We find 0 and 2 rejections, respectively.

Summing up, even though the observed aggregate frequency for the row
players is statistically different from the equilibrium predictions, this initial ev-
idence lends substantial support to the minimax hypothesis. Our next task is to
test more closely the implications of the equilibrium of the game.

16Indeed, the p-value of the null hypothesis that row players choose the equilibrium frequen-
cies is 0.06 percent, for column players it is 41 percent, and for both players it is 0.48 percent.
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TABLE II

MARGINAL FREQUENCIES AND ACTION PAIR FREQUENCIES IN PENALTY KICK EXPERIMENT
WITH PROFESSIONAL PLAYERSa

Marginal Frequencies Pair Frequencies

Pair # Row L Column L LL LR RL RR χ2 p-Value

1 0.320 0.453 0.140 0.180 0.313 0.367 0.729
2 0.360 0.380* 0.127 0.233 0.253 0.387 0.305
3 0.307 0.427 0.127 0.180 0.300 0.393 0.459
4 0.327 0.460 0.153 0.173 0.307 0.367 0.819
5 0.327 0.493 0.153 0.173 0.340 0.333 0.568
6 0.340 0.480 0.140 0.200 0.340 0.320 0.525
7 0.287** 0.427 0.133 0.153 0.293 0.420 0.190
8 0.320 0.460 0.100 0.220 0.360 0.320 0.068*
9 0.307 0.467 0.133 0.173 0.333 0.360 0.479

10 0.313 0.480 0.167 0.147 0.313 0.373 0.454
11 0.353 0.480 0.180 0.173 0.300 0.347 0.866
12 0.427* 0.480 0.193 0.233 0.287 0.287 0.359
13 0.367 0.473 0.167 0.200 0.307 0.327 0.952
14 0.327 0.447 0.153 0.173 0.293 0.380 0.782
15 0.340 0.553** 0.173 0.167 0.380 0.280 0.071*
16 0.320 0.473 0.160 0.160 0.313 0.367 0.659
17 0.347 0.467 0.200 0.147 0.267 0.387 0.256
18 0.327 0.440 0.140 0.187 0.300 0.373 0.791
19 0.327 0.440 0.140 0.187 0.300 0.373 0.791
20 0.327 0.460 0.153 0.173 0.307 0.367 0.819

aThe ** and * denote rejections at the 5 and 10 percent levels, respectively, of the minimax binomial model for the
marginal frequencies of the row and column players. In the last column they denote rejections of the joint hypothesis
that both players in a pair choose actions with the equilibrium frequencies.

IMPLICATION 1—Winning Rates and the Distribution of Play: Minimax play
implies that the success probabilities of each action will be the same for each
player and be equal to 0.7909 for the row player and 0.2090 for the column
player. Further, when combined with the equilibrium strategies, we can ob-
tain the relative action–outcome frequencies associated with the equilibrium.
Table III reports the relative frequencies of action–outcome combinations ob-
served for each of the row and column players in the sample. Using the ab-
solute frequencies that correspond to these entries, we can then implement a
chi-squared test of conformity with minimax play. This test would be identical
to the one performed in Table II if it were not for the fact that the success rate
is determined not only by the choice of strategies, but also by the realization of
the dice.

The results of the test show that the null hypothesis is rejected for no player
at the 5 percent significance level and for three players at the 10 percent sig-
nificance level, both cases being fewer than the expected number of rejections,
2 and 4, respectively. Hence, at the individual level the hypothesis that scoring
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TABLE III

TESTING THAT PROFESSIONAL PLAYERS EQUATE THEIR STRATEGY PAYOFFS TO THE
EQUILIBRIUM RATESa

L R Pearson
StatisticPair # Player Success Fail Success Fail p-Value

1 Row 0.260 0.060 0.540 0.140 1.360 0.715
Column 0.080 0.373 0.120 0.427 0.491 0.921

2 Row 0.300 0.060 0.500 0.140 0.645 0.886
Column 0.047 0.333 0.153 0.467 6.441 0.092*

3 Row 0.233 0.073 0.553 0.140 2.351 0.503
Column 0.100 0.327 0.113 0.460 0.774 0.856

4 Row 0.247 0.080 0.540 0.133 1.306 0.728
Column 0.107 0.353 0.107 0.433 0.302 0.960

5 Row 0.280 0.047 0.520 0.153 2.278 0.517
Column 0.100 0.393 0.100 0.407 0.989 0.804

6 Row 0.280 0.060 0.513 0.147 0.776 0.855
Column 0.080 0.400 0.127 0.393 1.755 0.625

7 Row 0.207 0.080 0.600 0.113 6.673 0.083*
Column 0.093 0.333 0.100 0.473 1.161 0.762

8 Row 0.273 0.047 0.507 0.173 3.640 0.303
Column 0.113 0.347 0.107 0.433 0.670 0.880

9 Row 0.233 0.073 0.560 0.133 2.508 0.474
Column 0.113 0.353 0.093 0.440 1.134 0.769

10 Row 0.247 0.067 0.560 0.127 2.051 0.562
Column 0.093 0.387 0.100 0.420 0.617 0.892

11 Row 0.260 0.093 0.513 0.133 1.018 0.797
Column 0.107 0.373 0.120 0.400 0.683 0.877

12 Row 0.327 0.100 0.493 0.080 5.132 0.162
Column 0.073 0.407 0.107 0.413 1.857 0.603

13 Row 0.287 0.080 0.480 0.153 0.657 0.883
Column 0.100 0.373 0.133 0.393 1.112 0.774

14 Row 0.247 0.080 0.553 0.120 1.843 0.606
Column 0.080 0.367 0.120 0.433 0.426 0.935

15 Row 0.260 0.080 0.533 0.127 0.743 0.863
Column 0.093 0.460 0.113 0.333 7.563 0.056*

16 Row 0.253 0.067 0.553 0.127 1.578 0.664
Column 0.073 0.400 0.120 0.407 1.687 0.640

17 Row 0.253 0.093 0.540 0.113 2.043 0.564
Column 0.120 0.347 0.087 0.447 2.119 0.548

18 Row 0.253 0.073 0.533 0.140 0.950 0.813
Column 0.087 0.353 0.127 0.433 0.337 0.953

19 Row 0.260 0.067 0.527 0.147 0.942 0.815
Column 0.073 0.367 0.140 0.420 1.696 0.638

20 Row 0.260 0.067 0.553 0.120 1.509 0.680
Column 0.093 0.367 0.093 0.447 0.671 0.880

aThe ** and * denote rejections at the 5 and 10 percent levels, respectively.
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probabilities are identical both across strategies and to the equilibrium rate
cannot be rejected for most players at conventional significance levels.

The question of whether behavior at the aggregate level is generated from
equilibrium play may be evaluated by testing the joint hypothesis that each one
of the experiments is simultaneously generated by equilibrium play. The test
statistic for the Pearson joint test is simply the sum of the individual test statis-
tics for each type of player. Under the null hypothesis, it is distributed as a χ2

with 60 degrees of freedom for both the set of row players and the set of col-
umn players. We find that the Pearson statistics are 40.002 and 32.486, with an
associated p-value above 90 percent in both cases.17 Hence, the null hypoth-
esis that the data for all players are generated by equilibrium play cannot be
rejected at conventional significance levels.

We interpret these individual and aggregate results as consistent with the hy-
pothesis that these subjects equate their strategies’ payoffs to the equilibrium
ones.

IMPLICATION 2—The Serial Independence Hypothesis: Another testable
implication of equilibrium play is that a player should randomize using the
same distribution at each stage of the game. This implies that players’ choices
are serially independent. To our knowledge this hypothesis has never found
support in a laboratory setting. In particular, when subjects are asked to gen-
erate random sequences their sequences often have negative autocorrelation,
that is, individuals exhibit a bias against repeating the same choice (see Bar-
Hillel and Wagenaar (1991), Rapoport and Budescu (1992), Rapoport and
Boebel (1992), and Mookherjee and Sopher (1994)).18 This phenomenon is
sometimes referred to as the law of small numbers (Tversky and Kahneman
(1971), Camerer (1995)). The only possible exception that we are aware of is
owing to Neuringer (1986), who explicitly taught subjects to choose randomly
after hours of training by providing them with detailed feedback from previous
blocks of responses in the experiment. These training data are interesting in
that they suggest that experienced subjects might be able to learn to generate
randomness.19 In our case, however, subjects have accumulated their experi-
ence in the entirely different environment of a soccer field. Moreover, profes-
sional soccer players rarely take penalty kicks in the field in rapid succession,
as they are asked to do in the experiment. Instead, there is often a substan-
tial time delay, typically weeks, between subsequent penalties. Whether their
skills and experience in the field are useful to generate random sequences in
a laboratory setting where stage games are repeated in rapid succession is the
question we turn to next.

17The test statistics for the row and column players may not be added given that within each
pair the players’ success rates are not independent.

18Slonim, Roth and Erev (2003) reported evidence of positive autocorrelation in various zero-
sum 2 × 2 games.

19See Neuringer (2002) for a thorough review of the literature.
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To address this question, we consider the “runs test” of serial independence
previously performed by Walker and Wooders (2001), which proceeds as fol-
lows. Take the sequence of actions chosen by player i in the order in which
they occurred si = {si1� si2� � � � � sini}� where six ∈ {L�R}, x ∈ [1� ni], ni = ni

L + ni
R,

and ni
R and ni

L are the number of R and L choices made by player i. A run is
defined as a succession of one or more identical actions which are preceded
and followed by a different action or no action at all. When the choices six are
serially independent, all the combinations of ni

R right choices and ni
L choices

out of ni
L + ni

R choices are equally probable. In that case, the probability of
observing r runs in a sequence of ni

L + ni
R action choices, ni

L and ni
R right, is

known (see Gibbons and Chakraborti (1992)) and given by

f (r|ni
L�n

i
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Let ri be the observed number of runs in the sequence si. Then the null hy-
pothesis of serial independence will be rejected at the 5 percent confidence
level if the probability of ri or fewer runs is less than 0.025 or if the proba-
bility of ri or more runs is less than 0.025; that is, if F(r|ni

L�n
i
R) < 0�025 or if

1−F(r−1|ni
L�n

i
R) < 0�025, where F(r|ni

L�n
i
R)= ∑r

k=1 f (k|ni
L�n

i
R) denotes the

probability of obtaining r or fewer runs. The results of these tests are shown in
Table IV.

We find that the null hypothesis of serial independence is rejected for two
players at the 5 percent significance level and for four players at the 10 per-
cent level, precisely the expected number of rejections in both cases under
the null hypothesis. These results indicate that, according to this test, the hy-
pothesis that professional soccer players generate random sequences cannot
be rejected. They switch strategies neither too often nor too little. Moreover,
the number of rejections is remarkably consistent with the theory. This be-
havior is in sharp contrast to the overwhelming experimental evidence from
the psychological and experimental literatures mentioned earlier. It indicates
that field skills and years of experience may be quite valuable, even if it comes
from situations where repetitions are not taken in rapid succession and from
circumstances that are vastly different from those they found in the laboratory.
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TABLE IV

RUNS TESTS IN PENALTY KICK EXPERIMENT WITH PROFESSIONAL PLAYERSa

Choices Runs

Pair Player R L ri F(ri − 1) F(ri)

1 Row 102 48 72 0.840 0.877
Column 82 68 69 0.129 0.167

2 Row 96 54 74 0.727 0.779
Column 93 57 72 0.488 0.554

3 Row 104 46 64 0.404 0.469
Column 86 64 82 0.884 0.913

4 Row 101 49 69 0.604 0.682
Column 81 69 75 0.433 0.499

5 Row 101 49 79 0.985** 0.992
Column 76 74 80 0.717 0.770

6 Row 99 51 74 0.830 0.869
Column 78 72 89 0.981** 0.987

7 Row 107 43 53 0.025 0.041*
Column 86 64 72 0.315 0.375

8 Row 102 48 69 0.655 0.730
Column 81 69 69 0.124 0.160

9 Row 104 46 63 0.323 0.404
Column 80 70 67 0.066 0.089

10 Row 103 47 58 0.065 0.089
Column 78 72 85 0.922 0.943

11 Row 97 53 66 0.235 0.289
Column 78 72 69 0.113 0.147

12 Row 86 64 68 0.125 0.162
Column 78 72 77 0.541 0.605

13 Row 95 55 71 0.484 0.559
Column 79 71 80 0.729 0.781

14 Row 101 49 72 0.802 0.845
Column 83 67 63 0.018 0.027*

15 Row 99 51 68 0.441 0.507
Column 67 83 68 0.103 0.135

16 Row 102 48 67 0.509 0.592
Column 79 71 74 0.353 0.416

17 Row 98 52 71 0.605 0.679
Column 80 70 72 0.246 0.301

18 Row 101 49 62 0.156 0.199
Column 84 66 71 0.231 0.285

19 Row 101 49 68 0.539 0.604
Column 84 66 78 0.666 0.724

20 Row 101 49 75 0.918 0.947
Column 81 69 71 0.204 0.254

aThe ** and * denote rejections at the 5 and 10 percent levels, respectively.
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This evidence represents the first time that subjects have been found to dis-
play statistically significant serial independence in a strategic game in a lab-
oratory setting. Furthermore, together with the evidence supporting the hy-
pothesis that subjects equate payoffs across strategies and to the equilibrium
success rates, these results also represent the first time that any subjects satisfy
these two equilibrium conditions in the laboratory in games where players are
predicted to choose probabilistic mixtures.

3.1.2. College students

The results for this subject pool are presented in a way that parallels the pre-
sentation of the evidence for the professional soccer players. Table V presents
aggregate statistics that describe the aggregate outcomes of the experiment.

The aggregate data for these players also seem to conform well to the equi-
librium predictions since the observed frequencies appear to be broadly con-
sistent with the minimax model, especially for the diagonal pairs of choices.
Moreover, as in the case of professionals, the observed aggregate win fre-
quency for the row player (0.7877) is less than 1 standard deviation away from
the expected value. However, a closer look quickly reveals that the observed

TABLE V

RELATIVE FREQUENCIES OF CHOICES AND WIN PERCENTAGES IN PENALTY KICK EXPERIMENT
WITH COLLEGE STUDENTSa

A. Frequencies
Column Player Choice Marginal

frequencies for
row player

L R

L 0�168 0�233 0�401
(0�165) (0�198) (0�364)

Row [0�0068] [0�0073] [0�0088]
Player
Choice R 0�228 0�370 0�599

(0�289) (0�347) (0�636)
[0�0083] [0�0087] [0�0088]

Marginal 0�397 0�603
frequencies for (0�455) (0�545)
column player [0�009] [0�009]

B. Win Percentages
Observed row player win percentage 0�7877
Minimax row player win percentage 0�7909
Minimax row player win std. deviation 0�0074

aIn panel A the numbers in parentheses represent minimax predicted relative frequencies, whereas those in brack-
ets represent standard deviations for observed relative frequencies under the minimax hypothesis. In panel B, minimax
row player win percentage and std. deviation are the mean and the standard deviation of the observed row player mean
percentage win under the minimax hypothesis.
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TABLE VI

MARGINAL FREQUENCIES AND ACTION PAIR FREQUENCIES IN PENALTY KICK EXPERIMENT
WITH COLLEGE STUDENTSa

Marginal Frequencies Pair Frequencies

Pair # Row L Column L LL LR RL RR χ2 p-Value

1 0.360 0.387* 0.147 0.213 0.240 0.400 0.399
2 0.427* 0.387* 0.160 0.267 0.227 0.347 0.134
3 0.427* 0.387* 0.160 0.267 0.227 0.347 0.134
4 0.427* 0.433 0.173 0.253 0.260 0.313 0.350
5 0.413 0.387* 0.167 0.247 0.220 0.367 0.220
6 0.413 0.387* 0.147 0.267 0.240 0.347 0.164
7 0.427* 0.407 0.207 0.220 0.200 0.373 0.096*
8 0.407 0.387* 0.140 0.267 0.247 0.347 0.168
9 0.427* 0.393 0.187 0.240 0.207 0.367 0.143

10 0.380 0.367** 0.133 0.247 0.233 0.387 0.172
11 0.427* 0.480 0.167 0.260 0.313 0.260 0.091*
12 0.420 0.400 0.213 0.207 0.187 0.393 0.036**
13 0.427* 0.393 0.233 0.193 0.160 0.413 0.002**
14 0.287** 0.460 0.140 0.147 0.320 0.393 0.260
15 0.220** 0.440 0.100 0.120 0.340 0.440 0.004**
16 0.460** 0.300** 0.120 0.340 0.180 0.360 0.000**
17 0.427* 0.367** 0.160 0.267 0.207 0.367 0.064*
18 0.407 0.387* 0.153 0.253 0.233 0.360 0.250
19 0.427* 0.393 0.233 0.193 0.160 0.413 0.002**
20 0.420 0.393 0.227 0.193 0.167 0.413 0.004**

aThe ** and * denote rejections at the 5 and 10 percent levels, respectively, of the minimax binomial model for the
marginal frequencies of the row and column players. In the last column they denote rejections of the joint hypothesis
that both players in a pair choose actions with the equilibrium frequencies.

behavior is far from the minimax predictions. For instance, observed marginal
frequencies for both the row and column players are substantially different
from the predicted values.20 Furthermore, both players choose very similar fre-
quencies, roughly 0.40 for L and 0.60 for R. This suggests that these subjects
may not appreciate the slight differences in payoffs in the off-diagonal ele-
ments of the payoff matrix, differences that in equilibrium induce players to
adopt different strategies from the opponent.

The rejections of minimax play are even more apparent from Table VI, which
reports the marginal frequencies for each player and the relative frequencies
of choices at the pair level.

First, the binomial test for conformity with minimax play indicates that the
model is rejected for 6 and 22 players at the 5 and 10 percent levels, respec-
tively. This excessively high amount of rejections, three and more than five

20The aggregate chi-squared test for the conformity with minimax play based on Pearson good-
ness of fit has a p-value of 2 × 10−13.
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times greater than those predicted by the equilibrium of the game at those
levels, indicates that there will be substantial deviations from equilibrium play
in the subsequent tests of the minimax hypothesis. Indeed, using the absolute
frequencies that correspond to the observed joint choices reported in the table
and their associated minimax probabilities, a chi-squared test for conformity
with minimax play indicates that the model is rejected for 6 and 9 pairs at the
5 and 10 percent levels of significance. Under the null hypothesis we would
expect only 1 and 2 rejections, respectively.21

To sum up, the excessively high amount of rejections in these tests clearly in-
dicates substantial deviations from equilibrium play. Next, we test the minimax
predictions more closely.

IMPLICATION 1—Winning Rates and the Distribution of Play: Table VII
tests whether the observed distribution of play is equal to the equilibrium dis-
tribution using the success rates of each action for each player.

Using the absolute frequencies that correspond to each action–outcome
combination, a chi-squared test shows that the minimax multinomial model
is rejected for 9 players at the 5 percent significance level and 13 players at the
10 percent level, when the expected number of rejections under the hypoth-
esis of minimax play is 2 and 4, respectively. Thus, at the individual level the
hypothesis that scoring probabilities are identical across strategies and equal
to the equilibrium strategies can be rejected for an excessively high number of
players.

With regard to aggregate behavior, the sum of the individual test statistics
of each type of player under the null hypothesis is distributed as a χ2 with
60 degrees of freedom. For the row players the joint test statistic is 108.652
and for the column players it is 113.102, with associated p-values of 1.2×10−4

and 4.1×10−5, respectively. Hence, the null hypothesis that the data for all
players are generated by equilibrium play is strongly rejected at conventional
significance levels.

These results, therefore, indicate that observed behavior is far from the equi-
librium one and highly different from professional soccer players’ behavior.

IMPLICATION 2—The Serial Independence Hypothesis: To test whether
subjects randomize across actions using the same probability distribution at
each stage, we implement the runs test of serial independence. The results are
given in Table VIII.

The null hypothesis of serial independence is rejected for 7 and 13 players
at the 5 and 10 percent significance levels, in each case more than three times

21The case of pairs 12 and 20 is interesting. Although the marginal frequencies with which
the players choose each action are not statistically different from the equilibrium strategies, their
joint behavior rejects the equilibrium multinomial model. As can be seen from the data, their joint
behavior is highly correlated in that they tend to choose main diagonal entries too frequently.
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TABLE VII

TESTING THAT COLLEGE STUDENTS EQUATE THEIR STRATEGY PAYOFFS TO
THE EQUILIBRIUM RATESa

L R Pearson
StatisticPair # Player Success Fail Success Fail p-Value

1 Row 0.313 0.047 0.520 0.120 2�322 0.508
Column 0.053 0.333 0.113 0.500 4�668 0.198

2 Row 0.360 0.067 0.427 0.147 4�866 0.182
Column 0.107 0.280 0.107 0.507 4�892 0.180

3 Row 0.353 0.073 0.433 0.140 3�781 0.286
Column 0.060 0.327 0.153 0.460 4�702 0.195

4 Row 0.360 0.067 0.427 0.147 4�866 0.182
Column 0.093 0.340 0.120 0.447 0�291 0.962

5 Row 0.293 0.120 0.440 0.147 5�234 0.155
Column 0.120 0.267 0.147 0.467 6�411 0.093*

6 Row 0.367 0.047 0.453 0.133 5�706 0.127
Column 0.067 0.320 0.113 0.500 3�559 0.313

7 Row 0.327 0.100 0.447 0.127 2�931 0.402
Column 0.107 0.300 0.120 0.473 2�348 0.503

8 Row 0.347 0.060 0.447 0.147 3�491 0.322
Column 0.053 0.333 0.153 0.460 5�345 0.148

9 Row 0.340 0.087 0.433 0.140 3�168 0.366
Column 0.120 0.273 0.107 0.500 5�789 0.122

10 Row 0.307 0.073 0.493 0.127 0�280 0.964
Column 0.053 0.313 0.147 0.487 6�096 0.107

11 Row 0.387 0.040 0.460 0.113 8�677 0.034**
Column 0.060 0.420 0.093 0.427 4�037 0.257

12 Row 0.300 0.120 0.427 0.153 6�108 0.106
Column 0.140 0.260 0.133 0.467 8�243 0.041**

13 Row 0.293 0.133 0.433 0.140 8�008 0.046**
Column 0.147 0.247 0.127 0.480 10�549 0.014**

14 Row 0.207 0.080 0.600 0.113 6�673 0.083*
Column 0.093 0.367 0.100 0.440 0�311 0.958

15 Row 0.173 0.047 0.640 0.140 14�135 0.003**
Column 0.047 0.393 0.140 0.420 5�102 0.164

16 Row 0.373 0.087 0.447 0.093 6�791 0.079*
Column 0.060 0.240 0.120 0.580 15�620 0.001**

17 Row 0.320 0.107 0.453 0.120 3�335 0.343
Column 0.120 0.247 0.107 0.527 9�523 0.023**

18 Row 0.367 0.040 0.460 0.133 6�381 0.094*
Column 0.060 0.327 0.113 0.500 4�025 0.259

19 Row 0.347 0.080 0.440 0.133 3�045 0.385
Column 0.093 0.300 0.120 0.487 2�590 0.459

20 Row 0.280 0.140 0.460 0.120 8�854 0.031**
Column 0.140 0.253 0.120 0.487 9�002 0.029**

aThe ** and * denote rejections at the 5 and 10 percent levels, respectively.
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TABLE VIII

RUNS TESTS IN PENALTY KICK EXPERIMENT WITH COLLEGE STUDENTSa

Choices Runs

Pair Player R L ri F(ri − 1) F(ri)

1 Row 96 54 69 0.383 0.457
Column 92 58 61 0.022 0.033*

2 Row 86 64 90 0.995** 0.997
Column 92 58 70 0.324 0.386

3 Row 86 64 65 0.049 0.069
Column 92 58 91 0.999** 1.000

4 Row 86 64 77 0.637 0.699
Column 85 65 82 0.873 0.904

5 Row 88 62 78 0.737 0.788
Column 92 58 78 0.823 0.863

6 Row 88 62 72 0.352 0.415
Column 92 58 71 0.386 0.456

7 Row 86 64 65 0.049 0.069
Column 89 61 66 0.091 0.121

8 Row 89 61 84 0.958* 0.971
Column 92 58 58 0.006 0.009**

9 Row 86 64 79 0.754 0.804
Column 91 59 80 0.883 0.913

10 Row 93 57 82 0.958* 0.970
Column 95 55 66 0.182 0.229

11 Row 86 64 76 0.574 0.637
Column 78 72 69 0.113 0.147

12 Row 87 63 63 0.026 0.038*
Column 90 60 85 0.976** 0.984

13 Row 86 64 68 0.125 0.162
Column 91 59 88 0.995** 0.997

14 Row 107 43 82 0.999** 0.999
Column 81 69 66 0.049 0.068

15 Row 117 33 67 0.999** 0.999
Column 84 66 82 0.863 0.896

16 Row 81 69 73 0.309 0.369
Column 105 45 70 0.863 0.896

17 Row 86 64 74 0.441 0.507
Column 95 55 69 0.348 0.419

18 Row 89 61 84 0.958* 0.971
Column 92 58 83 0.963* 0.976

19 Row 86 64 76 0.574 0.637
Column 91 59 76 0.692 0.747

20 Row 87 63 72 0.332 0.394
Column 91 59 81 0.913 0.938

aThe ** and * denote rejections at the 5 and 10 percent levels, respectively.
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the number of expected rejections. These findings indicate that college subjects
do not generate random sequences. Hence, they are consistent with an exten-
sive experimental evidence in the literature and drastically different from the
behavior of professional soccer players observed earlier. Also consistent with
past evidence is the fact that in most cases the reason for the rejections is an
excessive number of alternations.

Consequently, the results of the tests of serial independence decisively indi-
cate that individuals display statistically significant serial dependence. Together
with the results from the tests of equality of winning probabilities, we can con-
clude that the minimax model is not supported for college students.

3.2. O’Neill’s Experiment

The differences between professional soccer players and college students are
substantial in the penalty kick experiment. Professionals’ behavior is very close
to the equilibrium of the game, while college students’ behavior is far from it.
In this section we use a different zero-sum game, namely that introduced in
O’Neill (1987), in an attempt to study whether the experience and skills that
professional players use in the field are valuable in laboratory situations that
do not resemble any previously encountered situation. We implement the same
tests as in the penalty kick experiment.

3.2.1. Professional players

Table IX presents aggregate statistics that describe observed relative fre-
quencies for each pair of moves and each card. Minimax relative frequencies
appear in parentheses and their standard deviations under the minimax hy-
pothesis appear in brackets. The bottom panel reports the observed win fre-
quencies for the row player.

These aggregate data conform remarkably well to the equilibrium predic-
tions. In fact, there is a striking consistency of the observed relative frequen-
cies with those implied by the minimax model. Relative frequencies for ac-
tion pairs involving non-J cards are in the neighborhood of 0.04, while relative
frequencies for pairs involving one J card and for the pair involving the two
J cards are in the neighborhood of 0.08 and 0.16, respectively. The aggregate
row player win frequency (0.3945) is less than 1 standard deviation away from
the expected value (0.40). Also, a chi-squared test for the conformity with min-
imax play based on Pearson goodness of fit indicates that the minimax model
cannot be rejected at conventional significance levels. It yields a statistic of
7.873 whose p-value is above 90 percent. In addition, the marginal frequencies
of actions for the row and column players are extremely close to the minimax
predictions. In every case, they are less than 1 standard deviation away.

Table X reports the observed marginal frequencies for each player. Under
the minimax hypothesis, each player’s chosen actions are a realization of a
multinomial distribution with probabilities 0.4 for the J card, and 0.2 for each
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TABLE IX

RELATIVE FREQUENCIES OF CARD CHOICES AND WIN PERCENTAGES IN O’NEILL’S
EXPERIMENT WITH PROFESSIONAL PLAYERSa

A. Frequencies
Column Player Choice Marginal

frequencies for
1 2 3 J row player

1 0�037 0�042 0�039 0�083 0�201
(0�040) (0�040) (0�040) (0�080) (0�200)
[0�003] [0�003] [0�003] [0�004] [0�006]

2 0�042 0�038 0�044 0�079 0�203
Row (0�040) (0�040) (0�040) (0�080) (0�200)

Player [0�003] [0�003] [0�003] [0�004] [0�006]
Choice

3 0�038 0�037 0�040 0�083 0�198
(0�040) (0�040) (0�040) (0�080) (0�200)
[0�003] [0�003] [0�003] [0�004] [0�006]

J 0�084 0�082 0�081 0�153 0�398
(0�080) (0�080) (0�080) (0�160) (0�400)
[0�004] [0�004] [0�004] [0�006] [0�008]

Marginal 0�200 0�198 0�204 0�398
frequencies for (0�200) (0�200) (0�200) (0�400)
column player [0�006] [0�006] [0�006] [0�008]

B. Win Percentages
Observed row player win percentage 0�3945
Minimax row player win percentage 0�4000
Minimax row player win std. deviation 0�0077

aIn Panel A the numbers in parentheses represent minimax predicted relative frequencies, whereas those in brack-
ets represent standard deviations for observed relative frequencies under the minimax hypothesis. In panel B, minimax
row player win percentage and std. deviation are the mean and the standard deviation of the observed row player mean
percentage win under the minimax hypothesis.

of the other cards. The table reports the p-values of the corresponding chi-
squared tests with 3 degrees of freedom. The minimax hypothesis also implies
that observed action combinations for each pair (not reported here) are a real-
ization of a multinomial distribution that results from the product of the mar-
ginals mentioned above. The last column of Table X reports the p-values of
the corresponding chi-squared tests with 15 degrees of freedom.

The expected number of rejections in the case of individual players is 2 and
4 at the 5 and 10 percent significance levels. We find that the actual number
of players for whom the null hypothesis is rejected is 2 and 3 at these levels.
Likewise, at the pair level we would expect 1 and 2 rejections, respectively.
We find, however, 2 and 6 rejections. These differences between the individual



94
I.PA

L
A

C
IO

S-H
U

E
R

TA
A

N
D

O
.V

O
L

IJ

TABLE X

RELATIVE FREQUENCIES OF CARD CHOICES IN O’NEILL’S EXPERIMENT WITH PROFESSIONAL PLAYERS AND MINIMAX MULTINOMIAL TESTSa

p-Values for Tests of
Row Player (R) Choices Column Player (C) Choices Minimax Multinomial Models

Row Column Both
Pair # 1 2 3 J 1 2 3 J Player Player Players

1 0.190 0.225 0.290** 0.295** 0.195 0.185 0.210 0.410 0.002‡ 0.940 0.018‡
2 0.205 0.215 0.245* 0.335** 0.200 0.205 0.250* 0.345* 0.223 0.257 0.001‡
3 0.210 0.195 0.200 0.395 0.195 0.175 0.205 0.425 0.987 0.804 0.802
4 0.215 0.205 0.180 0.400 0.145** 0.185 0.225 0.445 0.885 0.180 0.126
5 0.180 0.195 0.205 0.420 0.200 0.195 0.210 0.395 0.885 0.987 0.959
6 0.210 0.205 0.185 0.400 0.205 0.185 0.205 0.405 0.950 0.962 0.873
7 0.215 0.215 0.130** 0.440 0.205 0.190 0.205 0.400 0.105† 0.985 0.067†
8 0.195 0.215 0.195 0.395 0.225 0.150* 0.205 0.420 0.962 0.341 0.346
9 0.185 0.195 0.215 0.405 0.205 0.180 0.205 0.410 0.922 0.919 0.844

10 0.175 0.180 0.170 0.475** 0.195 0.195 0.215 0.395 0.192 0.962 0.787
11 0.205 0.190 0.170 0.435 0.250* 0.200 0.205 0.345* 0.651 0.257 0.864
12 0.200 0.200 0.195 0.405 0.195 0.200 0.205 0.400 0.998 0.997 0.986
13 0.215 0.185 0.195 0.405 0.195 0.215 0.190 0.400 0.922 0.950 0.893
14 0.185 0.185 0.205 0.425 0.205 0.290** 0.195 0.310** 0.852 0.007‡ 0.062†
15 0.215 0.200 0.170 0.415 0.210 0.185 0.200 0.405 0.744 0.953 0.923
16 0.205 0.195 0.195 0.405 0.195 0.165 0.175 0.465* 0.993 0.263 0.231
17 0.205 0.230 0.190 0.375 0.225 0.215 0.205 0.355 0.720 0.596 0.081†
18 0.210 0.195 0.180 0.415 0.205 0.245* 0.210 0.340* 0.888 0.267 0.080†
19 0.205 0.220 0.235 0.340* 0.170 0.205 0.175 0.450 0.327 0.423 0.192
20 0.195 0.210 0.200 0.395 0.185 0.205 0.180 0.430 0.987 0.777 0.436

aThe ** and * denote rejection of the minimax binomial model for a given card and player at the 5 and 10 percent levels, respectively. Similarly, ‡ and † denote rejection at
those levels of the minimax multinomial model based on Pearson statistic and a χ2(3) for all cards chosen by a given row or column player, and based on Pearson statistic and a
χ2(15) for all cards chosen by both players.
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and pair level number of rejections indicate that there is a contemporaneous
correlation in some players’ choices.

An interesting aspect of these tests is concerned with the distribution of
p-values.22 If players’ choices were drawn from the equilibrium mixture, the
resulting p-values should be realizations of a uniform distribution U[0�1] both
in the individual and pair level tests. But a look at the distribution of p-values
in the individual level tests readily reveals that this is not the case in that the
distribution is skewed toward 1. There are far too many values above 0.5 and
too few below 0.5.23 For instance, there are about 14 values too many above
0.85: we would expect 6 such values and we find 20. Thus, while about two-
thirds of the values seem consistent with a U[0�1] distribution, the marginal
distributions of one-third of the sample are too close to the equilibrium ones,
suggesting that these players do not behave as perfect i.i.d. randomizers. Sec-
tion 4 discusses in more detail this feature of players’ behavior.

On the other hand, the evidence at the pair level is more consistent with strict
randomization. If we examine the hypothesis that the joint behavior is a real-
ization of the product of the equilibrium mixtures, the Kolmogorov–Smirnov
test of equality of the empirical distribution of p-values and the uniform dis-
tribution U[0�1] results in a statistic equal to 1.06 (p-value = 0.2105), which is
not large enough to reject the null hypothesis at the 20 percent level.

Based on the above findings, we can say that minimax theory predicts well
the individual and joint behavior of our subjects.

IMPLICATION 1—Winning Rates and the Distribution of Play: Table XI tests
the null hypothesis that the success probabilities for both players are identical
across strategies and equal to the equilibrium probabilities. As in Walker and
Wooders (2001) analysis of O’Neill’s data, we aggregate actions 1, 2, and 3
into a single non-Joker action. We then implement the corresponding χ2 test of
conformity with minimax play. The tests have 3 degrees of freedom given that
the game being played is known. The table also indicates the rejections that
are obtained when the test is implemented for the individual choices of cards
(i.e., when 1, 2, 3, and J are treated on an individual basis).

The results show that for the choice of Joker and non-Joker the null hypothe-
sis is rejected for three players at the 5 percent significance level and six players
at 10 percent level, whereas the number of rejections when the test is imple-
mented for the individual card choices is 3 and 4 at these levels, respectively.
In both cases, therefore, the number of rejections is very close to the expected
number (2 and 4, respectively) according to the null hypothesis.

We also test whether behavior at the aggregate level is generated from equi-
librium play. Since the Pearson statistic for the joint test for all row players

22We are indebted to a referee for pointing this out.
23Indeed, if we perform a Kolmogorov–Smirnov test of equality of the empirical distribution

of the forty players’ p-values to the uniform distribution, we get a statistic equal to 2.43, which is
high enough to reject the null hypothesis at virtually any significance level.
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TABLE XI

TESTING THAT PROFESSIONAL PLAYERS EQUATE THEIR STRATEGY PAYOFFS TO THE
EQUILIBRIUM RATES IN O’NEILL’S EXPERIMENTa

Mixtures Win Rates

Pair # Player Joker Non-Joker Joker Non-Joker Pearson p-Value

1 Row 0.295 0.705 0.407 0.312 14.535 0.002**‡
Column 0.410 0.590 0.707 0.627 4.472 0.215

2 Row 0.335 0.665 0.403 0.316 7.878 0.049**‡
Column 0.345 0.655 0.609 0.679 6.295 0.098*

3 Row 0.395 0.605 0.367 0.413 0.462 0.927
Column 0.425 0.575 0.659 0.565 2.378 0.498

4 Row 0.400 0.600 0.388 0.433 0.608 0.895
Column 0.445 0.555 0.652 0.532 4.795 0.187†

5 Row 0.420 0.580 0.429 0.379 0.833 0.841
Column 0.395 0.605 0.544 0.636 1.701 0.637

6 Row 0.400 0.600 0.388 0.408 0.087 0.993
Column 0.405 0.595 0.617 0.588 0.191 0.979

7 Row 0.440 0.560 0.352 0.438 2.865 0.413
Column 0.400 0.600 0.613 0.592 0.087 0.993

8 Row 0.395 0.605 0.456 0.372 1.431 0.698
Column 0.420 0.580 0.571 0.612 0.701 0.873

9 Row 0.405 0.595 0.358 0.429 1.024 0.795
Column 0.410 0.590 0.646 0.568 1.337 0.720

10 Row 0.475 0.525 0.358 0.419 5.660 0.129
Column 0.395 0.605 0.570 0.636 0.993 0.803

11 Row 0.435 0.565 0.368 0.442 2.229 0.526
Column 0.345 0.655 0.536 0.618 3.729 0.292

12 Row 0.405 0.595 0.383 0.420 0.323 0.956
Column 0.400 0.600 0.613 0.583 0.191 0.979

13 Row 0.405 0.595 0.420 0.387 0.243 0.970
Column 0.400 0.600 0.575 0.617 0.347 0.951

14 Row 0.425 0.575 0.353 0.470 3.576 0.311
Column 0.310 0.690 0.516 0.609 8.208 0.042**‡

15 Row 0.415 0.585 0.373 0.402 0.441 0.932
Column 0.405 0.595 0.617 0.605 0.135 0.987

16 Row 0.405 0.595 0.420 0.378 0.389 0.943
Column 0.465 0.535 0.634 0.579 4.222 0.238

17 Row 0.375 0.625 0.387 0.392 0.608 0.895
Column 0.355 0.645 0.592 0.620 1.941 0.585

18 Row 0.415 0.585 0.301 0.479 6.628 0.085*
Column 0.340 0.660 0.632 0.576 3.608 0.307

19 Row 0.340 0.660 0.412 0.386 3.146 0.370
Column 0.450 0.550 0.689 0.536 7.118 0.068*

20 Row 0.395 0.605 0.367 0.405 0.385 0.943
Column 0.430 0.570 0.663 0.570 2.670 0.445

aThe ** and * denote rejections at the 5 and 10 percent levels, respectively; ‡ and † denote rejections at the same
levels when the four cards (1, 2, 3, J) are treated on an individual basis.
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is 53.351, with an associated p-value of 0.715, and for all column players is
55.122, with an associated p-value of 0.654, the null hypothesis that the data
for all players were generated by equilibrium play cannot be rejected at con-
ventional significance levels.

IMPLICATION 2—The Serial Independence Hypothesis: In Table XII we im-
plement the runs tests to study whether players’ choices are serially indepen-
dent for the choice of Joker and non-Joker cards. We find that the null hypoth-
esis of serial independence is rejected for two and four players at the 5 and
10 percent significance levels, which, according to the theory, is precisely the
number of rejections that we should expect at these levels.

These findings, therefore, support the hypothesis that professional soccer
players are able to generate random sequences in the laboratory. Since profes-
sionals behave relatively close to the equilibrium behavior of the game accord-
ing to the previous tests as well, the results are consistent with the idea that
field skills and experience can be transferred to this zero-sum game as well.

3.2.2. College students

In principle, it is conceivable that it is the greater stage payoffs and the
greater number of repetitions in the experiment relative to previous imple-
mentations of the experiment in the literature, and not the skills and field ex-
perience of the subjects, that accounts for the consistency with the minimax
hypothesis. Thus, we next study college students under identical circumstances
to those faced by professionals.

The results are presented in Tables XIII–XVI to parallel the presentation of
the empirical evidence for the professional soccer players. They can be sum-
marized as follows. Our findings are consistent with those obtained by Brown
and Rosenthal (1990), Walker and Wooders (2001), and Shachat (2002) for
O’Neill’s experiment. Even though aggregate frequency data do not seem too
far from equilibrium behavior, the minimax hypothesis is decisively rejected
in virtually every test we implement. Observed aggregate row player win per-
centage is more than 1 standard deviation away from the predicted value (Ta-
ble XIII). The hypotheses that players mix according to the equilibrium distrib-
utions are rejected, both at the individual and at the pair level, in an excessively
large number of cases (Table XIV). Individual Pearson tests for the equality of
winning rates to the equilibrium one are also rejected for a very high number
of subjects; at the aggregate level the joint hypothesis that each observation is
generated from equilibrium play is rejected for all row players and all column
players as well, both when cards are treated as NJ and J, and when they are
treated on an individual basis (Table XV). There is also strong evidence that
too many players, relative to the minimax predictions, exhibit statistically sig-
nificant serial dependence in the runs tests (Table XVI); in fact there are about
three times the number of rejections observed for professional players.
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TABLE XII

RUNS TESTS IN O’NEILL’S EXPERIMENT WITH PROFESSIONAL PLAYERSa

Choices Runs

Pair Player Joker Non-Joker ri F(ri − 1) F(ri)

1 Row 59 141 90 0.821 0.856
Column 82 118 88 0.067 0.087

2 Row 67 133 94 0.707 0.754
Column 69 131 92 0.508 0.564

3 Row 79 121 90 0.147 0.182
Column 85 115 100 0.543 0.599

4 Row 80 120 98 0.530 0.586
Column 89 111 115 0.983** 0.988

5 Row 84 116 94 0.236 0.283
Column 79 121 96 0.436 0.493

6 Row 80 120 110 0.968* 0.977
Column 81 119 95 0.334 0.391

7 Row 88 112 89 0.056 0.074
Column 80 120 100 0.644 0.696

8 Row 79 121 94 0.324 0.377
Column 84 116 102 0.672 0.722

9 Row 81 119 103 0.773 0.816
Column 82 118 91 0.143 0.180

10 Row 95 105 98 0.322 0.375
Column 79 121 98 0.554 0.610

11 Row 87 113 107 0.850 0.882
Column 69 131 97 0.786 0.833

12 Row 81 119 91 0.155 0.194
Column 80 120 100 0.644 0.696

13 Row 81 119 93 0.235 0.284
Column 80 120 93 0.252 0.303

14 Row 85 115 89 0.068 0.090
Column 62 138 87 0.488 0.563

15 Row 83 117 101 0.635 0.690
Column 81 119 99 0.563 0.622

16 Row 81 119 114 0.992** 0.994
Column 93 107 108 0.840 0.873

17 Row 75 125 97 0.601 0.662
Column 71 129 101 0.889 0.918

18 Row 83 117 98 0.465 0.521
Column 68 132 78 0.019 0.027*

19 Row 68 132 90 0.422 0.478
Column 90 110 96 0.260 0.308

20 Row 79 121 96 0.436 0.493
Column 86 114 90 0.084 0.108

aThe ** and * denote rejections at the 5 and 10 percent levels, respectively.
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TABLE XIII

RELATIVE FREQUENCIES OF CARD CHOICES AND WIN PERCENTAGES IN O’NEILL’S
EXPERIMENT WITH COLLEGE STUDENTSa

A. Frequencies
Column Player Choice Marginal

frequencies for
1 2 3 J row player

1 0�045 0�042 0�040 0�079 0�205
(0�040) (0�040) (0�040) (0�080) (0�200)
[0�003] [0�003] [0�003] [0�004] [0�006]

2 0�044 0�046 0�038 0�080 0�207
Row (0�040) (0�040) (0�040) (0�080) (0�200)

Player [0�003] [0�003] [0�003] [0�004] [0�006]
Choice

3 0�042 0�034 0�046 0�075 0�196
(0�040) (0�040) (0�040) (0�080) (0�200)
[0�003] [0�003] [0�003] [0�004] [0�006]

J 0�076 0�084 0�078 0�154 0�392
(0�080) (0�080) (0�080) (0�160) (0�400)
[0�004] [0�004] [0�004] [0�006] [0�008]

Marginal 0�206 0�205 0�202 0�387
frequencies for (0�200) (0�200) (0�200) (0�400)
column player [0�006] 0�006 [0�006] [0�008]

B. Win Percentages
Observed row player win percentage 0�3915
Minimax row player win percentage 0�4000
Minimax row player win std. deviation 0�0077

aIn Panel A the numbers in parentheses represent minimax predicted relative frequencies, whereas those in brack-
ets represent standard deviations for observed relative frequencies under the minimax hypothesis. In panel B, minimax
row player win percentage and std. deviation are the mean and the standard deviation of the observed row player mean
percentage win under the minimax hypothesis.

As in the penalty kick experiment, these findings are in sharp contrast with
those obtained for professional soccer players. These results also testify to
the robustness of previous findings in the literature. Although we use much
greater monetary incentives and more repetitions than in O’Neill’s original ex-
periment, and we do find improvements in the behavior of college students
from the perspective of equilibrium (see Table XIII in the next section for
a comparison), the minimax model continues to be rejected. Given that the
circumstances of the experiment are identical for college students and profes-
sional players, the results indicate that field skills and experience are indeed
important.
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TABLE XIV

RELATIVE FREQUENCIES OF CARD CHOICES IN O’NEILL’S EXPERIMENT WITH COLLEGE STUDENTS AND MINIMAX MULTINOMIAL TESTSa

p-Values for Tests of
Row Player (R) Choices Column Player (C) Choices Minimax Multinomial Models

Row Column Both
Pair # 1 2 3 J 1 2 3 J Player Player Players

1 0.225 0.270** 0.195 0.310** 0.140** 0.205 0.260** 0.395 0.022‡ 0.065† 0.054†
2 0.205 0.180 0.160 0.455* 0.185 0.205 0.210 0.400 0.316 0.950 0.916
3 0.200 0.205 0.215 0.380 0.230 0.190 0.225 0.355 0.930 0.451 0.624
4 0.145** 0.215 0.155* 0.485** 0.175 0.180 0.225 0.420 0.031‡ 0.604 0.011‡
5 0.135** 0.190 0.235 0.440 0.195 0.175 0.195 0.435 0.096† 0.732 0.028‡
6 0.185 0.215 0.235 0.365 0.215 0.230 0.230 0.325** 0.515 0.184 0.048‡
7 0.230 0.185 0.215 0.370 0.200 0.150* 0.165 0.485** 0.615 0.062† 0.078†
8 0.195 0.225 0.165 0.415 0.185 0.225 0.185 0.405 0.575 0.780 0.024‡
9 0.150* 0.215 0.200 0.435 0.200 0.215 0.195 0.390 0.342 0.960 0.085†

10 0.280** 0.260** 0.200 0.260** 0.250* 0.185 0.210 0.355 0.000‡ 0.280 0.000‡
11 0.195 0.175 0.180 0.450 0.225 0.260** 0.205 0.310** 0.513 0.040‡ 0.203
12 0.280** 0.210 0.180 0.330** 0.215 0.220 0.175 0.390 0.025‡ 0.729 0.000‡
13 0.175 0.195 0.195 0.435 0.200 0.200 0.210 0.390 0.732 0.985 0.998
14 0.170 0.230 0.260** 0.340* 0.195 0.195 0.205 0.405 0.066† 0.993 0.160
15 0.140** 0.210 0.200 0.450 0.195 0.205 0.200 0.400 0.175 0.997 0.677
16 0.245* 0.195 0.190 0.370* 0.225 0.215 0.160 0.400 0.457 0.484 0.020‡
17 0.195 0.160 0.200 0.445 0.210 0.205 0.200 0.385 0.451 0.971 0.514
18 0.265** 0.210 0.185 0.340* 0.215 0.205 0.180 0.400 0.096† 0.885 0.036‡
19 0.300** 0.185 0.190 0.325** 0.255** 0.240 0.195 0.310** 0.004‡ 0.034‡ 0.000‡
20 0.195 0.205 0.165 0.435 0.215 0.195 0.205 0.385 0.596 0.943 0.744

aThe ** and * denote rejection of the minimax binomial model for a given card and player at the 5 and 10 percent levels, respectively. Similarly, ‡ and † denote rejection at
those levels of the minimax multinomial model based on Pearson statistic and a χ2(3) for all cards chosen by a given row or column player, and based on Pearson statistic and a
χ2(15) for all cards chosen by both players.
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TABLE XV

TESTING THAT COLLEGE STUDENTS EQUATE THEIR STRATEGY PAYOFFS TO THE EQUILIBRIUM
RATES IN O’NEILL’S EXPERIMENTa

Mixtures Win Rates

Pair # Player Joker Non-Joker Joker Non-Joker Pearson p-Value

1 Row 0.310 0.690 0.371 0.355 8�253 0.041**‡
Column 0.395 0.605 0.709 0.595 3�885 0.274†

2 Row 0.455 0.545 0.352 0.394 3�542 0.315
Column 0.400 0.600 0.600 0.642 0�868 0.833

3 Row 0.380 0.620 0.382 0.371 0�885 0.829
Column 0.355 0.645 0.592 0.643 2�795 0.424

4 Row 0.485 0.515 0.351 0.427 7�493 0.058*
Column 0.420 0.580 0.595 0.621 0�542 0.910

5 Row 0.440 0.560 0.375 0.464 3�385 0.336
Column 0.435 0.565 0.621 0.540 2�795 0.424

6 Row 0.365 0.635 0.438 0.402 1�431 0.698
Column 0.325 0.675 0.508 0.622 6�875 0.076*

7 Row 0.370 0.630 0.432 0.381 1�250 0.741
Column 0.485 0.515 0.670 0.534 10�035 0.018**

8 Row 0.415 0.585 0.349 0.504 6�274 0.099*
Column 0.405 0.595 0.642 0.504 5�135 0.162

9 Row 0.435 0.565 0.425 0.327 3�608 0.307
Column 0.390 0.610 0.526 0.697 6�670 0.083*

10 Row 0.260 0.740 0.558 0.324 24�195 0.000**‡
Column 0.355 0.645 0.592 0.628 2�156 0.541

11 Row 0.450 0.550 0.311 0.473 7�639 0.054*†
Column 0.310 0.690 0.548 0.623 7�639 0.054*

12 Row 0.330 0.670 0.515 0.343 9�097 0.028*†
Column 0.390 0.610 0.564 0.623 0�764 0.858

13 Row 0.435 0.565 0.391 0.407 1�076 0.783
Column 0.390 0.610 0.564 0.623 0�764 0.858

14 Row 0.340 0.660 0.324 0.424 4�764 0.190
Column 0.405 0.595 0.728 0.529 8�104 0.044*

15 Row 0.450 0.550 0.389 0.318 4�948 0.176
Column 0.400 0.600 0.563 0.708 6�337 0.096*

16 Row 0.370 0.630 0.473 0.357 3�281 0.350
Column 0.400 0.600 0.563 0.625 0�781 0.854

17 Row 0.445 0.555 0.371 0.360 2�712 0.438
Column 0.385 0.615 0.571 0.675 3�378 0.337

18 Row 0.340 0.660 0.368 0.326 6�587 0.086*‡
Column 0.400 0.600 0.688 0.642 3�420 0.331

19 Row 0.325 0.675 0.400 0.533 15�937 0.001**‡
Column 0.310 0.690 0.581 0.478 16�626 0.001**‡

20 Row 0.435 0.565 0.368 0.354 2�368 0.500
Column 0.385 0.615 0.584 0.675 3�201 0.362

aThe ** and * denote rejections at the 5 and 10 percent levels, respectively; ‡ and † denote rejections at the same
levels when the four cards (1, 2, 3, J) are treated on an individual basis.
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TABLE XVI

RUNS TESTS IN O’NEILL’S EXPERIMENT WITH COLLEGE STUDENTSa

Choices Runs

Pair Player Joker Non-Joker ri F(ri − 1) F(ri)

1 Row 62 138 102 0.995** 0.996
Column 79 121 92 0.226 0.271

2 Row 91 109 95 0.208 0.251
Column 80 120 92 0.209 0.252

3 Row 76 124 92 0.287 0.338
Column 71 129 107 0.985** 0.990

4 Row 97 103 99 0.366 0.421
Column 84 116 111 0.961* 0.972

5 Row 88 112 103 0.663 0.715
Column 87 113 131 0.999** 1.000

6 Row 73 127 99 0.766 0.813
Column 65 135 99 0.942 0.961

7 Row 74 126 112 0.996** 0.997
Column 97 103 94 0.146 0.182

8 Row 83 117 107 0.889 0.915
Column 81 119 90 0.123 0.155

9 Row 87 113 102 0.624 0.677
Column 78 122 96 0.461 0.518

10 Row 52 148 82 0.747 0.790
Column 71 129 103 0.937 0.956

11 Row 90 110 105 0.740 0.785
Column 62 138 92 0.796 0.834

12 Row 66 134 114 0.999** 1.000
Column 78 122 88 0.099 0.126

13 Row 87 113 94 0.201 0.244
Column 78 122 89 0.126 0.161

14 Row 68 132 72 0.001 0.002**
Column 81 119 84 0.021 0.029*

15 Row 90 110 93 0.141 0.176
Column 80 120 112 0.984** 0.989

16 Row 74 126 83 0.037 0.052
Column 80 120 101 0.696 0.747

17 Row 89 111 112 0.954* 0.966
Column 77 123 109 0.973* 0.981

18 Row 68 132 104 0.980** 0.986
Column 80 120 89 0.104 0.135

19 Row 65 135 91 0.605 0.673
Column 62 138 91 0.737 0.796

20 Row 87 113 107 0.850 0.882
Column 77 123 98 0.606 0.660

aThe ** and * denote rejections at the 5 and 10 percent levels, respectively.
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4. DISCUSSION

4.1. Evaluation of the Results

Over the past decades, many experimental attempts have been made to test
the theory of minimax, the results of which seem to go against the theory.24

The first tests that yielded some support for equilibrium theory used empir-
ical data obtained from competitive sports. Walker and Wooders (2001), for
instance, brought initialevidence showing that top tennis players behave much
more closely to equilibrium predictions than experimental subjects whose play
had been observed thus far. Palacios-Huerta (2003) offered additional empir-
ical evidence showing that professional soccer players’ play is consistent with
minimax theory. To properly evaluate our experimental results and compare
them with the previous literature, let us describe some implications of mini-
max theory and the circumstances under which they are testable.

When players behave according to the unique mixed-strategy equilibrium of
a given game, we have the following implications:

1. The distribution of play should be close to the equilibrium one.
2. Marginal frequencies should be close to the equilibrium mixtures.
3. For each player, success rates should be (a) equal across chosen actions,

and (b) equal to the equilibrium success rate.
4. There should be no contemporaneous correlation.
5. There should be no serial correlation.

These are direct implications of equilibrium play. There are other, second
order, implications as well:

6. When one tests for implication 2, the distribution of the resulting p-
values across individuals and pairs should be close to uniform. Similarly, in the
tests of implication 3, the distribution of p-values across individuals should be
close to uniform.

Not all the above implications are equally strong. For example, implication
1 implies 2, but not the other way around. Indeed, marginal frequencies may
well be the equilibrium ones, but due to contemporaneous correlation, the dis-
tribution of play may be far from the equilibrium distribution. Similarly, im-
plication 1 implies 3, but not the other way around. Also, none of 1, 2, and 3,
either jointly or separately, implies 6, and clearly 4 does not imply 5. Needless
to say, the failure of even a single one of the above implications is enough to
conclude that the observed behavior is not consistent with equilibrium. Never-
theless, if we are willing to go beyond the reject/no reject approach of classical
hypothesis testing, we may say that the more implications are not rejected and
the stronger these are, the more closely the observed behavior conforms to the
theory.25

24See O’Neill (1987), Erev and Roth (1998), and the references therein.
25See O’Neill (1991) for an argument supporting a Bayesian approach to hypothesis testing

combined with a measure of closeness of the results to the predictions that is much less rigid than
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When the game is not known, as in the case of empirical studies such as
Walker and Wooders (2001) and Palacios-Huerta (2003), implications 1, 2, and
3(b) cannot be tested. This is because since the game is not known, the equi-
librium is not known either. On the other hand, implication 3(a) can be tested
(using the maximum likelihood estimates of the success rates) even when the
game is not known. Further, one can use the resulting p-values to check the
corresponding implication 6. The favorable evidence reported in Walker and
Wooders (2001) is based only on the nonrejection of implication 3(a) and im-
plication 6 when applied to 3(a). Similarly, the favorable evidence reported
in Palacios-Huerta (2003) is based on the nonrejection of implications 3(a), 6
applied to 3(a), and, in addition, implication 5.

When the game is known, as is typically the case in experimental studies like
the present one, all the above implications are testable. In other words, the
number and strength of the implications we can test is greater than in the field
studies where the theory found support. Our qualitative results for the case of
professional soccer players can be summarized as follows:
• Implications 1 and 2 are not rejected at the individual level, both in the

penalty kick game and in O’Neill’s game. At the aggregate level, these im-
plications are not rejected for O’Neill’s game.

• Although in the penalty kick game implication 1 is rejected at the aggre-
gate level (and so is implication 2 for row players), an alternative hypothe-
sis that the row players play the mixture 1/3-2/3 (only 3 percentage points
apart from the theoretical 0.36-0.63 mixture), and the column players play
the equilibrium mixture is far from being rejected. This alternative hypoth-
esis is consistent with implication 4 of no contemporaneous correlation, and
although 1/3 is statistically significantly different from 0.36, it seems it would
be unfair to blame players for not hitting 0.36 precisely, especially when the
opponents, even if they were sharp enough to notice it, could barely increase
their success rate.

• Implications 3 and 4 are not rejected.
• There is little evidence of serial correlation.
• In O’Neill’s game, implication 6 is rejected when applied to implication 2 at

the player level but not at the pair level. It is also rejected when applied to
implication 3(b) but not to implication 3(a).26

Based on the above, we can say that although strictly speaking minimax the-
ory is rejected, it is still useful in explaining the experimental behavior of pro-
fessional soccer players in the lab. More importantly perhaps, as the testable
implications in the field (3(a), 5, and 6 applied to 3(a)) find support in the field
and also find strong support in the lab both in the penalty kick and O’Neill’s

the reject/no reject dichotomy. He argues that this approach may be particularly appropriate for
situations which make precise point predictions like in the games we study.

26The p-values of the corresponding Kolmogorov–Smirnov tests are 0.267 for implication 3(a)
and 0.002 for implication 3(b).
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games, the evidence in the lab represents a good predictor for behavior in the
field.

Last, with regard to the main evidence against the theory, it consists of the
fact that in O’Neill’s game the marginal frequencies of one-third of the players’
action choices are too close to the equilibrium mixtures to have been generated
by an i.i.d. process. Nonetheless, as long as players’ behavior is largely unpre-
dictable to other players, which seems to be the case given that the data pass
our tests of serial independence, we may safely say that the minimax theory
does well in explaining our soccer players’ choices.

4.2. Are All Professionals Perfect i.i.d. Randomizers?

The time series evidence from the runs tests is not inconsistent with this
hypothesis in any of the two experiments we have implemented. Yet, the cross-
sectional evidence in O’Neill’s game showed that about one-third of the players
in this experiment chose actions with a relative frequency that is too close to the
equilibrium distribution. While this is evidence that minimax theory is useful
for predicting subjects’ behavior, it is also evidence that these players are not
choosing their actions according to an exact i.i.d. process. Next, we examine
whether similar evidence of this lack of randomization may also be present in
the 2 × 2 game.

Recall that in the 2 × 2, penalty kick game, the hypothesis that professionals
play according to the equilibrium was rejected at the aggregate level. The rea-
son is that the aggregate relative frequencies with which row players choose
their actions are statistically different from the equilibrium mixtures. This
suggests the hypothesis that subjects do randomize, but with nonequilibrium
probabilities. Consider the following hypothesis: “At each stage, row players
choose L and R with probabilities 1/3 and 2/3, respectively, and column play-
ers choose with probabilities 0.462 and 0.538.”27 It turns out that a chi-squared
test based on Pearson goodness of fit indicates that this new hypothesis cannot
be rejected at conventional significance levels since it yields a statistic of 0.296
whose p-value is 0.96. Further, we can perform for each player a chi-squared
test of conformity with our new hypothesis and check whether the resulting
distribution of p-values is significantly different from uniform U[0�1]. Indeed,
it turns out that a Kolmogorov–Smirnov test rejects the hypothesis that the p-
values are draws from a uniform distribution; it yields a statistic of 1.99 whose
p-value is 0.0007. The reason is that, as in O’Neill’s experiment, the p-values
are much higher than expected. In other words, our alternative theory predicts
subjects’ choices “too well.”

The excessive closeness of the observed frequencies to the hypothesized ones
suggests that subjects do not randomize, but rather try to “match” some prob-
abilities they have, consciously or unconsciously, in mind. In the case of the

27These are the empirical frequencies. If we replace column players’ frequencies by the equi-
librium ones, the qualitative results do not change.
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penalty kick game, it does not seem unreasonable that row players may try
to keep their choices of L and R close to the 1/3-2/3 distribution. This dis-
tribution is very close to the equilibrium one; the difference is not likely to be
detected by the opponent and it is arguably much simpler to play than the equi-
librium distribution. This may explain why they seem to try to choose R twice
as often as L. Similarly, in O’Neill’s game about one-third of the subjects seem
to try to keep their choices too close to the equilibrium distribution, which,
interestingly enough, also prescribes choosing the J card twice as often as any
other given card.

4.3. Features that Catalyze Equilibrium Play

There is a growing literature in experimental economics that shows how cer-
tain anomalies found in experiments with students as subjects are attenuated
when the experiments are implemented, instead, with a nonstandard pool of
subjects in their own natural environment (e.g., List (2003, 2004)). On the
other hand, there is also evidence that experienced players still exhibit some
nonequilibrium behavior when they play under laboratory conditions where
they perform abstract tasks that lack a familiar context and that may not cap-
ture all the relevant aspects of the environment encountered in the field.28

The nonequilibrium behavior observed in some professionals in O’Neill’s game
may, in part, be attributed to this factor. Recall that this game is unfamiliar to
them and that the equilibrium requires treating a subset of available choices
(the three non-J cards) identically to each other. Clearly, this component of
the equilibrium represents an abstract task that professionals have never en-
countered in the field. Indeed, if we look only at the distribution of non-J card
choices and compare it to the equilibrium distribution 1/3-1/3-1/3, we find
that the cross-sectional distribution of the p-values of the tests is even more
skewed than the distribution in the tests for all the cards. Thus, subjects exhibit
a tendency to match particularly well the equilibrium frequencies of these three
cards.29 While this may not be particularly surprising since the written instruc-
tions of the experiment already treat the NJ cards identically, this evidence

28Kagel (1995), for instance, suggests that the reasons why professional bidders from the con-
struction industry fall prey to the winner’s curse in the experiments he cites are that (i) experi-
ments strip away a number of contextual cues that they employ in field settings and (ii) the bidding
environment created in the experiment is not representative of the environment encountered in
the field, as the construction industry has private value and repeated play elements that are not
present in the experiments.

29Matching frequencies is a behavior consistent with the evidence in the economics and psy-
chology literature documenting that agents exhibit a law of small numbers bias (see, e.g., Tversky
and Kahneman (1971), Rabin (2002), and other references therein). Although it is the time se-
ries properties (negative autocorrelation) of this law that have been the focus of the literature,
the cross-sectional implication is also quite apparent: a distribution of p-values skewed toward 1.
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indicates that the unfamiliar component of the equilibrium in this game drives
the one departure from minimax that some subjects exhibit.30

Last, there is also a literature that addresses the effect of context as an in-
ducement toward equilibrium behavior. Cooper, Kagel, Lo, and Gu (1999),
for instance, showed that context speeds up the learning process of Chinese
managers toward equilibrium play in a signaling game. In the psychology liter-
ature, Cosmides (1989) and Gigerenzer and Hug (1992) reported experimen-
tal evidence that the introduction of context dramatically reduces anomalous
behavior in the unfamiliar but arguably simple Wason selection task.31 In our
experiments, professional soccer players were given no contextual cues. Al-
though our 2 × 2 games were calibrated to be as close as possible to the real
life penalty kick, players were not informed of this fact. Furthermore, O’Neill’s
4 × 4 game is far from being representative of any interactive situation soc-
cer players may encounter in their everyday life. Therefore, it seems somewhat
striking that players exhibited very few departures from minimax play. The fol-
lowing observations may help elucidate our results:

SIMPLICITY OF THE GAMES: The zero-sum games studied in our experi-
ments are very simple and do not require too much abstraction. They are com-
plete information games with very few actions. In fact, our 2 × 2 game requires
little more than performing the routine, day-to-day tasks of professional play-
ers. Note that besides playing one official game per week, these people practice
4–5 hours a day, 4–5 days a week, for 10 months a year, and soccer is a game
that involves many zero-sum strategic situations (not only penalty kicks) that
require randomization.32 In this sense, our subjects might have spent a large
part of their lives attempting to generate i.i.d. sequences while facing oppo-
nents who do the same. O’Neill’s game on the other hand is simple in the
sense that payoffs involve no probabilities and there are only two payoff levels;
all that players need to know is that there are outcomes in which they win and
outcomes in which they lose. Compare this simplicity with the informational
requirements of common value auctions like the ones used in several exper-
imental studies (e.g., Kagel (1995), Harrison and List (2008)). In these type

30The strategic symmetry of the non-J cards should be as obvious to students as it is to pro-
fessionals. Consistent with this hypothesis, while the Kolmogorov–Smirnov test does not reject
the hypothesis that the p-values are drawn from a uniform distribution, we do find 11 subjects
whose p-values are above 0.85, when the expected number of such players is only 6. Thus, these
players seem to be matching too well the equilibrium frequencies. We are indebted to a referee
for raising this point.

31Ortmann and Gigerenzer (2000) summarized the results of the effect of context on experi-
mental outcomes in this task.

32Data from the weekly official games indicate that the goalkeepers in our sample are involved,
on average, in twelve penalty kicks per year, and our kickers are involved in roughly seven kicks
per year. About one-third of the kickers can be considered “designated penalty kick takers” for
their teams. For this subset, the average number of penalty kicks is eleven. No data are available
from their day-to-day practices.
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of auctions, there is an underlying (possibly infinite) set of states of the world
over which each player holds a prior, and each player has a state dependent
utility function. Unlike in O’Neill’s game, both the priors and the utility func-
tions affect the equilibria of these Bayesian games. Strategies in these games
are very complicated objects, and the equilibrium ones are much more difficult
to calculate, or even guess, than those in our zero-sum games.

UNIQUENESS OF THE EQUILIBRIUM: Both our zero-sum games have unique
equilibria that are independent of the risk preferences of the players. Players
only need to know that both players want to win. Even the simple signaling
games of Cooper, Kagel, Lo, and Gu (1999) are an order of magnitude more
complex than our zero-sum games.33 They usually have several equilibria which
even the most accepted refinements fail to disqualify. It is not completely sur-
prising then that some contextual cues may help players coordinate on one of
them. However, there is not much to coordinate on in our zero-sum games.
Moreover, we know of no solution concept that does not select the minimax
strategies in zero-sum games. Thus, it seems that context does not add much
to the structure of the simplest of these games.

These considerations may help to explain why none of the potential draw-
backs and limitations associated with the artificial environment that represents
a laboratory seems to induce professional players to play very differently from
the way they play in the field (in the penalty kick experiment) and from mini-
max equilibrium play (in both games). At the same time, they are not sufficient
for inexperienced student subjects to play according to the predictions of equi-
librium.

5. ADDITIONAL EVIDENCE AND EXTENSIONS

In this section we discuss some additional evidence we have collected and
studied.

TESTS OF SERIAL INDEPENDENCE: We have considered a logit model
for individual players to study whether own and opponent’s past choices and
outcomes, alone and interactive, play a role in determining current choices.
For O’Neill’s experiment, we have followed the formulation that Brown and
Rosenthal (1990) study, whereas for the penalty kick experiment, we have fol-
lowed the formulation suggested in Slonim, Roth, and Erev (2003). Consistent
with the evidence from the runs tests, the main finding is that the null hy-
pothesis that all the explanatory variables are jointly statistically insignificant

33This may explain the observation in Cooper, Kagel, Lo, and Gu (1999) that in abstract tasks
without contextual cues, students tend to perform better than old managers with inferior educa-
tion.
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is rejected for very few professional subjects, especially in the penalty kick ex-
periment, whereas it is rejected for up to six times many more students.

We have also pooled all forty subjects for each experiment and class of play-
ers, and estimated the binary choice dynamic panel data model with prede-
termined endogenous variables and unobserved individual heterogeneity de-
veloped in Arellano and Carrasco (2003). The model controls for the state
dependence that may be caused by past choices and past outcomes. The re-
sults confirm previous findings that no lagged endogenous variables (past own
and opponent’s choices and outcomes alone or interacted) are significant for
professionals. Negative autocorrelation and positive reinforcement, however,
significantly characterize the behavior of students.

ROBUSTNESS: We have also studied some variations in the experiments with
smaller samples of subjects. For instance, in the penalty kick experiment we
used payoffs that are entirely different from the scoring probabilities occur-
ring in the field. We also studied the behavior of professional players, where
kickers in the soccer field play the role of goalkeepers in the laboratory and
vice versa. Although care should be exercised here since our sample sizes are
much smaller, we find that none of these modifications of the experimental
procedures seems to cause any significant changes in the basic results obtained
earlier: professional soccer players continue to play with a high degree of ac-
curacy with respect to the equilibrium predictions, while college students do
not.

EXTENSIONS: The important differences among subject pools open up vari-
ous avenues for further research. For instance, it may be of interest to study the
extent to which field experience at the professional level is necessary to reach
the predicted equilibrium. As indicated earlier, we have pursued this question
by recruiting subjects drawn from the same pool of male college students as
the students recruited previously, except that they were required to be cur-
rently playing in one of the official amateur senior regional leagues, including
Tercera Division, described in Section 2. Playing in these leagues is still quite
competitive. Amateur teams practice as often as professional ones and have ex-
actly the same 10-month playing schedule. Also, players in these leagues began
playing soccer as early as those that became professional. Hence, conditional
on age, they have roughly the same years of field experience. They simply are
not as skilled as professional players in the many different aspects of the game.

We implemented both the penalty kick experiment and O’Neill’s experiment
for these subjects. Tables XVII and XVIII report the main results along with
those obtained with professional players and college students with no soccer
experience presented earlier. In Table XVIII, in addition, we include the re-
sults of Pearson’s tests of equality of winning rates when, rather than using
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TABLE XVII

SUMMARY STATISTICS IN PENALTY KICK EXPERIMENT

Professional Students Students with
Soccer with Soccer No Soccer

Choice Equilibrium Players Experience Experience

I. Aggregate Data
Row player frequencies L 0�363 0�333 0�392 0�401

R 0�636 0�667 0�608 0�599
Column player frequencies L 0�454 0�462 0�419 0�397

R 0�545 0�538 0�581 0�603
Row player win percentage 0�7909 0�7947 0�7927 0�7877

(std. deviation) (0�0074)

II. Number of Individual Rejections of Minimax Model at 5 (10) Percent
Row player (all cards) 1 (2) 0 (1) 1 (3) 2 (3)
Column player (all cards) 1 (2) 1 (2) 2 (2) 3 (10)
Both players (all cards) 1 (2) 1 (1) 1 (3) 3 (9)
All cards 4 (8) 4 (7) 9 (12) 12 (20)

III. Equality of Win Rates
Rejections at 5 (10) percent 2 (4) 0 (2) 2 (3) 5 (12)
Aggregate Pearson statistic — 31�60 42�45 65�69
p-value — 0�826 0�366 0�006

IV. Runs Tests for 40 Players
Rejections at 5 (10) percent 2 (4) 2 (4) 3 (5) 7 (13)

the equilibrium value, we use its maximum likelihood estimate,34 as well as
the original results of O’Neill’s experiment reported in Brown and Rosenthal
(1990) and Walker and Wooders (2001).

We find that the behavior of these subjects adheres in many cases almost
as closely as the behavior of professionals to the equilibrium predictions, and
sometimes even slightly better. As such they differ greatly from the way the
standard pool of college students behave.

These results indicate that field skills and years of experience playing soccer,
a game that offers several opportunities to behave strategically in zero-sum
situations, are a critical determinant of behavior in the laboratory.

6. CONCLUDING REMARKS

This paper exploits three distinct features of soccer: (i) the existence of a pre-
cisely defined strategic situation played in the soccer field whose formal struc-
ture can be reproduced in the laboratory, (ii) the fact that this situation has

34This is the procedure that Walker and Wooders (2001) followed in their reanalysis of
O’Neill’s data. It implies that the tests at the player level have 1 degree of freedom instead of 3.
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TABLE XVIII

SUMMARY STATISTICS IN O’NEILL’S EXPERIMENT

Professional Students Students with Students
Equilib- Soccer with Soccer No Soccer in

Card rium Players Experience Experience O’Neilla

I. Aggregate Data
Row player frequencies 1 0�200 0�201 0�203 0�206 0�221

2 0�200 0�203 0�197 0�206 0�215
3 0�200 0�198 0�197 0�196 0�203
J 0�400 0�398 0�403 0�392 0�362

Column player frequencies 1 0�200 0�200 0�199 0�206 0�226
2 0�200 0�198 0�198 0�205 0�179
3 0�200 0�204 0�203 0�201 0�169
J 0�400 0�398 0�400 0�387 0�426

Row player win percentage 0�400 0�394 0�403 0�391 0�410
(std. deviation) (0�007)

II. Number of Individual Rejections of Minimax Model at 5 (10) Percent
Row player (all cards) 1 (2) 1 (1) 2 (2) 5 (8) 6 (na)
Column player (all cards) 1 (2) 1 (1) 2 (2) 2 (4) 9 (na)
Both players (all cards) 1 (2) 2 (2) 1 (2) 3 (5) 9 (na)
All cards 8 (16) 8 (18) 11 (18) 23 (31) 35 (na)

III. Equality of Success Rates Across Strategies and to the Equilibrium Rate Using NJ and Jb

A. Using equilibrium frequencies and success probabilities (3 degrees of freedom at individual
level)
Rejections at 5 (10) percent 2 (4) 3 (6) 3 (6) 5 (15) 22 (25)
Aggregate Pearson tests

All row players p-value — 0�715 0�514 0�000009 6�78 × 10−17

All column players p-value — 0�654 0�959 0�0042 1�90 × 10−21

B. Using maximum likelihood estimates (1 degree of freedom at individual level)
Rejections at 5 (10) percent 2 (4) 2 (4) 3 (6) 8 (10) 10 (15)
Aggregate Pearson tests

All row players p-value — 0�404 0�221 0�005 4�93 × 10−8

All column players p-value — 0�298 0�387 0�002 1�45 × 10−8

IV. Runs Tests
Rejections at 5 (10) percent 2 (4) 2 (4) 3 (5) 7 (12) 15 (19)

aThe results in this column for O’Neill come from Brown and Rosenthal (1990) and Walker and Wooders (2001),
where “na” means that the corresponding estimate was not reported by the authors and may not be computed from
the data they report. O’Neill’s (1987) experiment involves 25 pairs, rather than 20 pairs, and 105 repetitions instead
of 200. Hence, the number of expected rejections under minimax at a given percentage level in the original O’Neill
experiment is 1.25 greater than those reported in the first column, and the standard deviation for observed relative
frequencies under minimax play in panel I is 0.009, rather than 0.007.

bIn O’Neill’s original experiment there are two pairs that represent extreme outliers. When these are ignored, the
p-values remain very low (1�2 × 10−9 and 1�7 × 10−12, respectively).
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a unique mixed-strategy equilibrium, and (iii) the evidence that professional
subjects play in a real life setting consistent with the equilibrium of this game.
These features are helpful for designing a first artefactual field experiment
about mixed-strategy interactions that isolates the role of laboratory context
and that allows the comparison of field and laboratory behavior. We find that
experience and skills may be transferred from the familiar soccer field to the
highly unfamiliar laboratory when professional subjects play this game. Their
skills are also valuable for playing very close to the equilibrium in a zero-sum
game that subjects have never faced before. Some deviations from equilibrium
in this game partially arise from a component that represents an abstract task
that professionals have never encountered in the field.

These findings provide insights into the transfer of knowledge across strate-
gic settings and also indicate that is important how experience is defined in
experimental settings. Further, our results may have theoretical, methodologi-
cal, and cognitive implications:

In terms of the theory, since professionals’ behavior is very close to the equi-
librium one, the theoretical concept of equilibrium may have greater predictive
power than previously considered, even in artificial settings such as a labora-
tory.

From a methodological perspective, the results are relevant to the extent to
which data that are typically used to inform game theory and other theoretical
areas in various social sciences, as well, often come from laboratory environ-
ments. In this sense, the insights obtained in the laboratory with the pool of
subjects that we would be interested in studying empirically in the field seem
largely applicable for predicting field behavior.

Last, from a cognitive perspective our findings are consistent with the idea
that skills are learned unconsciously and are active in the solution of the games
we have studied. In this sense, the “capacity of motivated subjects to find equi-
librium outcomes . . . without cognitive awareness of this capacity” emphasized
in Smith (2005) is supported, for the first time to our knowledge, in situations
requiring use of mixed strategies. From this perspective, Camerer, Loewen-
stein, and Prelec (2005) discussed neurological evidence showing how “with
experience at a task or a problem, the brain seems to gradually shift processing
toward brain regions and specialized systems that can solve problems auto-
matically and efficiently with low effort.” We cannot disregard the idea that
years of field experience in different zero-sum strategic situations, not only in
penalty kicks, have had these effects in professional soccer players. Similarly,
we cannot disregard the idea that players who became professionals were born
with greater aptitude for playing strategic zero-sum games. To delineate be-
tween treatment and selection effects, further treatments in the spirit of List
(2003, 2006) would be needed.
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