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Abstract

We study decentralized trade processes in general exchange economies and house allocation

problems with and without money. The processes are a¤ected by persistent random shocks

stemming from agents�maximization of random utility. By imposing structure on the utility

noise term �logit distribution�, one is able to calculate exactly the stationary distribution of

the perturbed Markov process for any level of noise. We show that the stationary distribution

places the largest probability on the maximizers of weighted sums of the agents� (intrinsic)

utilities, and this probability tends to 1 as noise vanishes.
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1 Introduction

This paper considers the allocation of indivisible durable goods through decentralized trading

processes. A simple example is the allocation of N o¢ ces among N students. Even if the

size of the problem, N , is relatively small, the number of possible allocations can be quite large.

With ten students and o¢ ces, the number of allocations is about 3.6 million. We examine how

successful decentralized trading processes, both with and without money, are in solving those

complex combinatorial problems.

We consider a situation where agents randomly meet over time. When a group of agents

meet, they exchange their goods in the following simple way. First, a new allocation for them is

randomly proposed, and it is accepted if it provides a higher utility for all of them. Otherwise,

the agents continue to hold their endowments.1 When they assess the proposed allocation, we

assume that their utility is a¤ected by random shocks. The shocks can be interpreted as mistakes,

or transitory changes in tastes attributed to noise; see, for example, the related notion of quantal

response equilibrium in behavioral game theory (McKelvey and Palfrey [8]).

Incorporating random terms in utility functions has been found to be quite useful in econo-

metric studies of discrete choice problems and behavioral game theory, and we employ one of the

leading speci�cations, the logit model, for the distribution of the noise term. Thanks to the special

structure of the model, we obtain the closed form solution of the stationary distribution, for any

level of noise. In this respect, our work is built on the literature pioneered by Blume [3, 4], who

identi�ed a set of conditions which enables one to derive the closed form stationary distribution

under logit noise. Our technical contribution is to show that a similar closed form can be obtained

in a wider class of models, even when Blume�s conditions are not satis�ed.2

This approach contrasts with the traditional long-run stochastic stability methodology (see

Kandori, Mailath and Rob [6] and Young [11]). The method identi�es those states �allocations�

in which the economy spends most of its time in the long run, when the noise in the system is

made negligible. Negligible noise implies a fairly long waiting time to see the long run e¤ects.

1Hence, agents in our model act myopically. Either bounded rationality or the arrival rate of trading opportunities

being low, relative to the discount factor, might justify this.
2Section 4 provides a detailed discussion.
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The present paper, in contrast, allows us to characterize the stationary distribution for any level

of noise. Speci�cally, we show that, for any level of noise, the states that maximize a weighted

sum of the agents�intrinsic utilities receive the largest probability in the stationary distribution.

Our result sheds light on the previous contribution by Ben-Shoham, Serrano and Volij [2].

They considered house allocation problems and found that, with vanishing noise, the minimum

envy allocation is selected when serious mistakes are less likely. An agent�s envy level is the

number of other agents who have better houses, and the minimum envy allocation is the one that

minimizes the aggregate envy level. We show that this somewhat mysterious result can be derived

from a more general principle, namely, that evolutionary dynamics with logit noise maximize the

aggregate utility level.3

Our results imply, in particular, that the most likely state is e¢ cient. Note that, with no

noise, our exchange processes may be stuck on an ine¢ cient state. For example, when only

bilateral trades are possible, the society may be stuck on an ine¢ cient state where there is no

double coincidence of wants.4 In this respect, our decentralized trading processes resemble the

algorithms to solve combinatorial optimization problems, where the process may get stuck at a

local maximum. For the latter problems, random search algorithms, notably simulated annealing

methods (see Aarts and Korst [1]) have been found quite e¤ective. Just like randomness in

simulated annealing helps to escape from a local maximum, so does the randomness in our trading

process to ensure that the society is not stuck at an ine¢ cient state.

The paper is organized as follows. Section 2 analyzes the dynamic model for discrete barter

economies. Using the assumption of quasilinear utilities, Section 3 presents a version of the result

that introduces monetary side payments that take place in a continuous money unit. The �nal

section discusses related literature.
3See Section 4 again for details.
4Ben-Shoham, Serrano and Volij [2] showed that an ine¢ cient state can be stochastically stable, when all mistakes

are equally likely. Hence adding noise does not always help escape from an ine¢ cient state. Our model provides a

set of su¢ cient conditions for the noise term to knock out ine¢ cient states.
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2 Decentralized Barter: Exchange Economies

There are K durable and indivisible commodities in the economy. The set of agents is N =

f1; : : : ; Ig. Agent i�s consumption set is Xi � f0; 1; 2; :::gK . This allows for the possibility that

an agent consumes an arbitrary number of units of each good, as in general exchange economies,

or only one unit of one of the (heterogeneous) goods, as in house allocation problems. At time

t 2 f1; 2; : : : ; g agent i holds a bundle of commodities denoted by zi(t). Although the individuals�

holdings may change over time, the aggregate endowment of goods remains �xed, i.e.
P
i2N zi(t) =

z. A coalition is a non-empty subset of agents. For any coalition S � N , a feasible allocation

for S at time t is a distribution of their endowments at t. Thus, the set of feasible allocations

for S at t is AS(zS(t)) = fz0S 2 �i2SXi j
P
i2S z

0
i =

P
i2S zi(t)g. In particular, the set of feasible

allocations in the economy is given by Z = AN (z) = fz0N 2 �i2NXi j
P
i2N z

0
i = zg:

There is an exogenously given set of allowable coalitions, denoted S � 2N that may meet and

trade in each period. For example, when only pairwise meetings are possible (a particular case

of our model), we have S = fS � N j jSj = 2g. At period t = 1; 2; : : : a coalition S 2 S is

selected with probability q(S) > 0 (independent of time), and has the opportunity to reallocate

their holdings of commodities. We assume that from any initial feasible allocation z, any feasible

allocation z0 can be reached through a series of feasible proposals by a �nite sequence of allowable

coalitions S1; : : : ; ST 2 S.

Suppose that, in the current period, a coalition S 2 S is selected, and let zS � zS(t) be the

allocation of goods for this coalition at the beginning of the current period. A new allocation for

this coalition is chosen according to a probability distribution, which may depend on the current

allocation, over the set of feasible allocations AS(zS). We assume that there is certain symmetry

in the proposal distribution.

Assumption 1 For any zS ; z0S 2 AS(�), the probability that allocation z0S is chosen when the

current allocation is zS is the same as the probability that allocation zS is chosen when the

current allocation is z0S .

There are some instances where this requirement is naturally satis�ed. For example, this

assumption holds when proposals are completely random (a new allocation is drawn from the
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uniform distribution over the set of feasible allocations for the coalition). Another example is

a house allocation problem with pairwise trade: Assumption 1 is satis�ed if a pair of players,

whenever they meet, always propose to exchange their houses.

We assume that agents�utilities are a¤ected by random shocks, so that agent i�s utility is given

by

vi(zi) = ui(zi) + �i(zi); (1)

where ui(zi) and �i(zi) stand for the intrinsic utility derived from the bundle zi and noise,

respectively. We assume that, when coalition S is formed, they adopt a (myopic) unanim-

ity rule: when allocation z0S is proposed instead of zS , it is adopted if and only if 8i 2 S;

ui(z
0
i)+ �i(z

0
i) � ui(zi)+ �i(zi), with a strict inequality for at least one agent. We assume that the

noise term has the following distribution.5

Assumption 2 The noise term is independently distributed over time and across agents according

to the type I extreme value distribution (or Gumbel distribution) with precision parameter �i > 0,

whose cumulative distribution function Fi is given by

Fi(x) = exp(� exp(��ix� 
i)); (2)

where 
i is a constant so that the resulting mean equals zero.

Note that agent i�s preferences over z0i and zi depend on the random variable �i(z
0
i) � �i(zi).

The above assumption basically implies that it has a bell-shaped distribution which is quite similar

to a normal distribution. One reason to consider this rather speci�c distribution is to obtain a

tractable model, which approximates the normal noise model (this does not admit a closed form

stationary distribution; see Remark 1 at the end of this section for more discussion). When the

5Since the noise terms can be negative, the marginal utility of goods can sometimes be negative. Consider, for

example, two bundles of durable goods z and z0, where z0 is obtained by adding one bicycle to z. Even though the

intrinsic marginal utility of a bike is positive (ui(z0) � ui(z) > 0), the realized marginal utility may sometimes be

negative ([ui(z0) + �i(z
0)]� [ui(z) + �i(z)] < 0). This captures the situation where the agent on average would like

a bike, but sometimes he is happy to give it up for various reasons (such as a transitory negative shock to his health

conditions).

4



noise term �i(zi) is distributed according to (2), it is known that the probability that agent i

agrees to receive z0i in exchange for zi is given by

Pr(vi(z
0
i) > vi(zi)) =

exp[�iui(z
0
i)]

exp[�iui(z
0
i)] + exp[�iui(zi)]

: (3)

>From this formula it can be seen that, as �i ! 1, noise vanishes and the agent maximizes ui
without any error. This distributional assumption is what is behind the logit model in economet-

rics.

The above description de�nes a Markov process on the set of feasible allocations of the economy.

At every period, the economy can transit from one allocation to another and, since we assumed

that it is always possible to go from any allocation to any other through a �nite sequence of feasible

reallocations, the resulting Markov process is irreducible. Moreover, there is a chance that the state

does not change, which makes the process aperiodic. For an irreducible and aperiodic process,

there is a unique stationary distribution with the following two properties. Firstly, starting from

any initial allocation, the probability distribution on period t allocations is known to approach

that stationary distribution as t ! 1. Secondly, the stationary distribution also represents the

proportion of time spent on each state over an in�nite time horizon. Our �rst result characterizes

this stationary distribution.

Proposition 1 In the barter model with random utility, the stationary distribution over the set

of allocations is given by

�(z) =
exp

P
i2N �iui(zi)P

z02Z exp
P
i2N �iui(z

0
i)
:

Before we present the proof, a few remarks are in order. First, the formula tells us that the

stationary distribution is �exponentially proportional� to the utilitarian social welfare functionP
i2N �iui(zi). In particular, the most likely states (for any level of noise) are the ones that

maximize that social welfare. Second, recall that �i is the precision parameter of agent i�s

noise term, meaning that a larger �i implies a smaller level of noise. The formula is easiest

to understand when we regard the noise term as the representation of mistakes; an agent who

makes fewer mistakes (i.e., who has a higher �i) has a higher weight in the long run distribution.

Third, the stationary distribution is independent of the matching probabilities, represented by

q(s). Suppose that we have two agents with identical utility functions and precision parameters,
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and assume that one has more opportunities to trade than the other. Although one might expect

that the one with more opportunities to trade does better than the other, in the long run they

receive the same payo¤ distribution.

Proof. Let Pr(z; z0) be the transition probability from z to z0. It is enough to show that

�(z) Pr(z; z0) = �(z0) Pr(z0; z) 8z; z0 2 Z: (4)

To see that this is su¢ cient, note that by summing both sides over all z0 2 Z we get

�(z) =
X
z02Z

�(z0) Pr(z0; z) 8z 2 Z;

which means that � is a stationary distribution. Equation (4) is what is known as the detailed

balance condition, and it says that the probability in�ows and out�ows are balanced for any pair

of states. Our symmetric proposal assumption 1 implies Pr(z; z0) = 0, Pr(z0; z) = 0, so that (4)

is satis�ed in such a case. In the remaining case, the closed form formula of �(z) implies that the

detailed balance condition is satis�ed if

exp
P
i2S0 �iui(zi)

exp
P
i2S0 �iui(z

0
i)
=
Pr(z0; z)

Pr(z; z0)
; (5)

where S0 � fi 2 N j z0i 6= zig is the set of agents who have di¤erent bundles at z and z0. Now

let us calculate the transition probabilities Pr(z; z0) and Pr(z0; z). Let S0 � fS 2 S jS0 � Sg be

the set of feasible coalitions containing S0. Starting with z, the new allocation z0 is obtained if

and only if a coalition S 2 S0 is selected, proposal z0S is made, and all members of S0 prefer z0i to

zi.6 Recalling that q(S) is the probability that coalition S is selected to make a proposal, and

denoting by rzS (z
0
S) the probability that S proposes z

0
S , we have, using (3),

Pr(z; z0) =
X
S2S0

q(S)rzS (z
0
S)
Y
i2S
Pr(vi(z

0
i) > vi(zi))

=
X
S2S0

q(S)rzS (z
0
S)
exp[

P
i2S0 �iui(z

0
i)]

H
;

where H =
Q
i2S0fexp[�iui(z0i)] + exp[�iui(zi)]g. Similarly, we have

Pr(z0; z) =
X
S2S0

q(S)rz0S (zS)
exp[

P
i2S0 �iui(zi)]

H
:

6Agents in S n S0 are proposed the same bundles as before, so they are indi¤erent between z0S and zS .
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By our symmetric proposal assumption 1, we have rzS (z
0
S) = rz0S (zS), and the condition (5) is

satis�ed.

Note that the detailed balance equation (4) fails when the proposal distribution does not satisfy

assumption 1, as the proof shows: without this assumption, the clean closed form solution cannot

be obtained.

Let us now examine how the stationary distribution changes with the level of noise. For

simplicity, consider the symmetric case with �1 = � � � = �I = �. As the level of noise decreases

(i.e., as � increases), states with higher social welfare
P
i2N ui(zi) receive higher probabilities.

When noise is vanishing (� !1), each term exp�
P
i2N ui(zi), z 2 Z diverges to in�nity, but the

one that corresponds to the maximizer of the social welfare
P
i2N ui(zi) does so with the highest

speed. Hence we have the following characterization.

Corollary 1 In the barter model with random utility, if the noise is symmetric �1 = � � � = �I = �,

then as � ! 1, the limiting stationary distribution places probability 1 on the set of allocations

that maximize the sum of the agents�intrinsic utility functions.

One can generalize the above corollary as follows: if for all i 2 N the noise parameter is �i = �i�

for some �i > 0, then as � ! 1, the limiting stationary distribution places probability 1 on the

set of allocations that maximize the weighted utilitarian social welfare function
P
i2N �iui(zi).

Remark 1 In the discussion paper version (Kandori, Serrano and Volij [7]), we have conducted

numerical simulations to compare our logit noise model with the one with normal noise. The sample

paths in the two models are similar, although convergence to the e¢ cient allocation appears to

be slower in the normal case. This may come from the fact that the logit distribution has fatter

tails, so that large shocks are more likely.

Remark 2 Assume now that the noise term enters the utility function in the following multi-

plicative form:

vi(zi) = ui(zi)�i(zi); (6)
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where log �i(zi) has type I extreme value distribution with parameter �i. Then we can replace

ui with log ui in the formula in Proposition 1 to obtain that the stationary distribution �(z)

is proportional to the weighted Nash social welfare function
Q
i2N ui(zi)

�i . The random util-

ity functions of the original model are monotone transformation of the ones in this model (i.e.,

log ui(zi)�i(zi) = u
0
i(zi)+ �i(zi), where u

0
i(zi) = log ui(zi) and �i(zi) = log �i(zi)), so that they can

merely be viewed as di¤erent representations of the same random preferences. When there is a

clear-cut cardinal meaning attached to the intrinsic utility, however, we can view them as intrin-

sically di¤erent. For example, consider the case where ui(zi) is interpreted as a von Neumann-

Morgenstern (or Bernoulli) utility function, or the monetary value of (or willingness to pay for) zi

in the case where agent i has a quasi-linear utility function. The situation where willingness to

pay is subject to additive noise is intrinsically di¤erent from the case where willingness to pay has

multiplicative noise. We can then say that the most likely state in the long run maximizes the

utilitarian social welfare function
P
i2N �iui(zi) in the former case, while the Nash social welfare

is maximized in the latter.

3 Trade with Money: House Allocation Problems with Side Pay-

ments

We now consider the case where indivisible goods are traded with monetary side payments. While

the barter model of the previous section may be a good approximation of the o¢ ce allocation in

a department, in order to describe a housing market it would be more realistic to introduce

monetary transfers. Speci�cally, we consider an economy with a set H of houses, and a set N

of agents, each of whom occupies one house. Hence, the number of houses is the same as the

number of agents: jHj = jN j. At each moment, agent i possesses one house and money, (zi;mi),

where the real number mi denotes agent i�s money holdings. We take the standard partial

equilibrium interpretation that mi represents the �ow activities not explicitly modeled.7 Namely,

7An alternative formulation would be to treat money as one of the durable goods in the previous section�s model.

However, this formulation su¤ers from the problematic feature that agents derive �ow utility from monetary balance,

even though they do not spend it on goods and services. Our partial equilibrium formulation avoids such a problem.
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it incorporates income �ow and expenditure on other goods besides the house. In particular, we

assume that there is enough income �ow in each period so that agents a¤ord the side payments

associated with housing transactions. We also assume pairwise trade, where at each moment a

pair of agents meet.

Each agent i 2 N is assumed to have quasi-linear utility:

�i(zi;mi) � vi(zi) +mi = ui(zi) + �i(zi) +mi: (7)

As before, �i(zi) is the random component of utility and it is distributed according to the type

I extreme value distribution with a common precision parameter � for all i 2 N . This turns

out to be essential for the analysis in this section. Note that the quasi-linear utility implies no

income e¤ects, and this is one reason why we are able to �separate�the law of motion of durable

goods from the dynamics of monetary transfers. This separation allows us, in turn, to apply �nite

Markov chain techniques to an economy with a perfectly divisible commodity (money).

In each period a pair of agents (i; j) is selected with probability q(i; j) > 0. Let vi = ui(zi) +

�i(zi) be agent i�s willingness to pay for the house he currently owns, and let vi = ui(zj) + �i(zj)

be agent i�s willingness to pay for agent j�s house. The values vj and vj are de�ned in a similar

way for agent j. Given the quasilinearity of preferences, there are potential gains from trade if

vi+vj > vi+vj . Those gains are realized by a transfer pi form j to i that satis�es vi+pi > vi and

vj � pi > vj . This is equivalent to say that (i) there is a non-empty acceptable range of transfers

Rij � (vi� vi; vj � vj) and (ii) pi 2 Rij . In what follows, when i < j, we keep track of pi, where a

negative pi represents a payment form i to j. We assume that the agents search over the possible

range of transfers and detect the acceptable range Rij with some probability �ij(Rij). When

they detect such a range exists, they trade with probability one, and presumably they settle for a

monetary transfer pi in Rij . We do not, however, need to assume any details of the bargaining

procedure, or how the transfer is actually determined.

Assumption 3 There is a probability measure �ij on (�1;1), such that agents i and j (i < j)

exchange their houses with probability �ij(Rij). Furthermore, �ij is symmetric: for all intervals

[a; b], �ij([a; b]) = �ij([�b;�a]).
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Note that the probability measure �ij does not necessarily have full support. One may assume

that the support of �ij is an appropriately bounded interval so that the monetary transfers are

compatible with the implicitly assumed income �ow. Note also that we assumed that bargaining

is ine¢ cient in the sense that agents may sometimes fail to trade even if Rij is non-empty. In a

remark at the end of this section, we will discuss what happens if one assumes e¢ cient bargaining.

A house allocation is an assignment (zi)i2N of the houses in H to the agents in N . Note that

if we ignore money holdings, the above trading process de�nes an irreducible Markov chain on the

set of house allocations. We are interested in the invariant distribution induced by our trading

process on the set of house allocations. Since after each pairwise meeting the probability of trade

depends only on the measure of the acceptable range of transfers, and not on the actual transfer

negotiated by the traders, the invariant distribution does not depend on the particular bargaining

procedure the traders use. The following proposition shows that the invariant distribution is also

independent of the measures �ij .

Proposition 2 Under assumption 3, the stationary distribution for the allocation of houses is

given by

�z(z) =
exp

�
�
P
i2N ui(zi)

�P
z02Z exp

�
�
P
i2N ui(z

0
i)
� :

The proof can be found in the appendix. The following remarks are in order:

Remark 3 The result can be extended to an exchange economy in which there are K indivisible

goods (apart from money) and where an agent can hold any subset of the indivisible goods. To

do this, as in Section 2, one needs to assume that the proposal distribution in each meeting is

�symmetric.� The result can also be extended to a process in which coalitions, not only pairs,

trade, where side payments in coalition S, p = (pi)i2S satis�es
P
i2S pi = 0.

Remark 4 If one assumes that the bargaining outcome is always fully e¢ cient (with respect to

the noise-perturbed utility), the closed form solution in Proposition 2 cannot be obtained. Under

this assumption, agents i and j exchange their houses if doing so increases the total surplus;

[ui(zj) + �i(zj)] + [uj(zi) + �j(zi)] > [ui(zi) + �i(zi)] + [uj(zj) + �j(zj)]:
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If the sum of the noise terms �i(�)+ �j(�) had extreme value distribution, a simple modi�cation of

our argument in the previous section would yield the same stationary distribution as in Proposition

2 (and this would correspond to the one-player version of Blume�s [4] model). However, this is

not the case, since �i(�) + �j(�) does not have extreme value distribution, even though �i(�) and

�j(�) do.

4 Related Work

Our work generalizes a result due to Ben-Shoham, Serrano and Volij [2]. In that paper, only

pairwise trade in the house allocation problem without money is considered, and the persistent

shocks are �mistakes�in decision-making. In particular, they assume that, when an agent has his

kth best house, the probability of accepting her mth best house (m > k) has the order of "m�k,

where " 2 (0; 1) is a small number. This is a particular formulation of mistake probabilities, where

more serious mistakes are less likely. They showed that, when the randomness is vanishingly small

(as " ! 0), the allocation that minimizes envy is selected in the long run. Agent i�s envy level

is the number of people who have better houses than agent i (according to i�s preferences). The

envy in the society is the sum of individual agents�envy levels. The current paper shows that

there is a more general mechanism at work operating behind the Ben-Shoham et al result. First,

we note that their speci�cation of noise can be related to the logit model. Let N be the number

of houses/agents and let us assume ui(zi) = 1; 2; : : : ; N , where N is the utility of the best house.

A straightforward calculation shows that one can obtain their mistake probabilities, when we

add the logit noise term to this utility function. Second, one can see that the envy is equal toP
i(N � u(xi)), and minimizing this expression is equivalent to maximizing the utilitarian social

welfare
P
i u(xi). We have found that the driving force of their result is that the logit noise model

maximizes the utilitarian social welfare (and this is true for any speci�cations of utility functions).

The dynamic adjustment processes with logit noise, leading to a speci�c closed form stationary

distribution (�Gibbs distribution�), has been studied extensively in the statistical mechanics and

simulated annealing literature (Aarts and Korst [1]). Blume [3, 4] pioneered in applying this
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technique to game theory;8 see also Durlauf [5] for broader applications in economics. Blume

obtained a closed form expression of the stationary distribution when the following three conditions

are satis�ed: (i) players play a potential game (i.e., each player�s best reply function is the same

as in a hypothetical game in which players have an identical payo¤ (�potential�)), (ii) at each

moment in time, only one player can adjust and (iii) the random noise terms in players�utility

functions have logit (or extreme value) distribution with identical precision parameter �. Blume

[4] showed, under those assumptions, that the stationary distribution is the Gibbs distribution

exp�P (a)P
a02A exp�P (a

0)
; (8)

where P is the potential, and A is the set of strategy pro�les. A number of papers have followed the

approach, including these: Young and Burke [12] presents an application of Blume�s result to the

geographical distribution of agricultural contracts in Illinois, Sandholm [10] applies it to Pigouvian

pricing under externalities, and Myatt and Wallace [9] to a class of collective decision problems

that includes the private provision of a public good. All those papers are special cases of Blume�s

work, where the aforementioned three conditions hold. In contrast to these existing works, the

present paper shows that a similar technique, leading to a similar closed form expression, can be

applied to a wider class of situations.

An essential, common feature of Blume�s work, our paper, and the simulated annealing liter-

ature is that the stationary distribution is determined by the detailed balance condition (4). All

three employ logit noise and the symmetry of possible changes of strategies (see our Assumption

1). They di¤er, however, in the additional assumptions that are employed to derive the detailed

balance condition. Blume employed the aforementioned three extra assumptions (i)-(iii), but our

work shows that the detailed balance condition can be satis�ed even when none of those holds.

(See Remark 4 in Section 3, which explains one aspect of the di¤erence in greater detail.)

Appendix
Proof of Proposition 2. For each pair of traders i and j (i < j), let �ij be the probability

measure speci�ed in Assumption 3. Consider the following rather speci�c bargaining procedure

that agents i and j may use to determine whether they trade houses and, if they do so, the transfer

8Blume [3] considers local interaction models, while Blume [4] contains a result for general K-player games.

12



that j will make to i. A price pi 2 (�1;1) is randomly chosen according to the probability

measure �ij . If the realized price falls inside the acceptable range, that is if pi 2 Rij , then they

trade houses and i receives pi from j. If the price falls outside the acceptable range, there is no

trade and no transfers are made. It is clear that if traders follow this procedure, the probability of

trade is given by �ij(Rij). Therefore, Assumption 3 is satis�ed. Since the law of motion of house

allocations only hinges on Assumption 3, and it is independent of how transfers are actually made,

if we �gure out the stationary distribution corresponding to this particular bargaining procedure,

we will have �gured it out for all bargaining procedures that induce a probability of trade given

by the measure �ij . This is what we are going to show. According to our bargaining procedure,

when pi is proposed, agents i and j agree to trade if and only if

ui(zj) + �i(zj) + pi > ui(zi) + �i(zi), and (9)

uj(zi) + �j(zi)� pi > uj(zj) + �j(zj). (10)

Then, as the random utility shocks �i(�) and �j(�) have extreme value distributions, condition (9)

is satis�ed with probability

exp(�(ui(zj) + pi))

exp(�(ui(zj) + pi)) + exp(�ui(zi))
: (11)

Similarly, condition (10) is satis�ed with probability

exp(�(uj(zi)� pi))
exp(�(uj(zi)� pi)) + exp(�uj(zj))

: (12)

Hence, given pi, trade occurs with the product of the above probabilities, which is equal to

exp[�(ui(zj) + uj(zi))]

H(pi)
: (13)

Here, H(pi) is the product of the denominators of (11) and (12). Note that the common precision

parameter � of the logit noise terms in utility is essential to eliminate pi from the numerator. For

the argument below, we also calculate the probability of the reverse inequalities of (9) and (10),

i.e., (1� (11))� (1� (12)), which is equal to

exp[�(ui(zi) + uj(zj))]

H(pi)
: (14)
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Suppose that now agents i and j possess zj and zi respectively, and they meet and come up

with price �pi. In that event, trade occurs if

ui(zj) + �i(zj) < ui(zi) + �i(zi)� pi, and (15)

uj(zi) + �j(zi) < uj(zj) + �j(zj) + pi. (16)

Note that those are the reverse inequalities of (9) and (10), which hold with probability (14). The

rest of the proof is similar to that of Proposition 1, so we only provide a sketch. Analogously to

condition (5) in the proof of Proposition 1, we only need to show

exp[�(ui(zi) + uj(zj)]

exp[�(ui(zj) + uj(zi)]
=
Pr(z0; z)
Pr(z; z0)

: (17)

Using (13) and (14), the transition probabilities are given by

Pr(z; z0) =
Z
q(ij)

exp[�(ui(zj) + uj(zi))]

H(pi)
d�ij(pi) and

Pr(z0; z) =
Z
q(ij)

exp[�(ui(zi) + uj(zj))]

H(pi)
d�ij(�pi).

By our symmetry assumption �ij(pi) = d�ij(�pi), the crucial condition (17) is satis�ed, which

completes the proof.
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